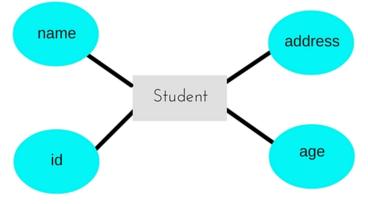
E-R Model

E-R Model is a logical representation of data in an organization. It views the entire system as a collection of entities related to one another. It is used to describe the elements of a system and their relationships.

Components of E-R Model

The E-R Model has three main components.


1) Entity

An Entity can be any object, place, person or class. In E-R Diagram, an entity is represented using rectangles.

2) Attribute

An Attribute describes a property or characteristic of an entity. An attribute is represented using eclipse.

3) Relationship

A Relationship describes relations between entities. Relationship is represented using diamonds.

There are three types of relationship that exist between Entities.

- Binary Relationship: Binary Relationship means relation between two Entities.
- Recursive Relationship: When an Entity is related with itself it is known as Recursive Relationship.
- Ternary Relationship: Relationship of degree three is called Ternary relationship.

ER Diagram Symbols and Notation

Entity-relationship diagrams are essential to modeling anything from simple to complex databases

Entities			
Symbol	Shape Name	Symbol Description	
Entity	Entity	These entities are independent from other entities.	
Weak Entity	Weak Entity	Weak entities depend on some other entity type.	
Associative Entity	Associative Entity	Associative entities relate the instances of several entity types.	

Attributes			
Symbol	Shape Name	Symbol Description	
Attribute	Attribute	Attributes are characteristics of an entity.	
Key attribute	Key attribute	Key attribute represents the main characteristic of an Entity.	
Multivalue attribute	Multivalued attribute	Multivalued attributes are those that can take one or more than one value.	
(Derived attribute)	Derived attribute	Derived attributes are attributes whose value can be calculated from related attribute values.	
Relationships			
Symbol	Shape Name	Symbol Description	
Relationship	Strong relationship	Relationships are associations between or among entities.	
Relationship	Weak relationship	Weak Relationships are connections between a weak entity and its owner.	

Mapping Constraints (Cardinalities)

Mapping cardinalities define the number of association between two entities.

Mapping cardinalities -

1. One to One: One entity can be associated with at most one entity and vice versa.

2. One to Many: One entity can be associated with more than one entity.

3. Many to One: More than one entity can be associated with at most one entity.

4. Many to Many: One entity can be associated with more than one entity and vice versa.

Primary Key

A primary is a column or set of columns in a table that uniquely identifies tuples (rows) in that table.

Super Key

A super key is either a single or a combination of attributes that can be used to uniquely identify a database record.

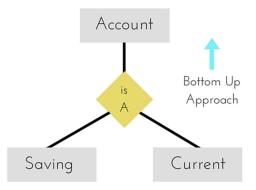
Candidate Key

A candidate key is a column, or set of columns, in a table that can uniquely identify any database record without referring to any other data.

Secondary or Alternative key

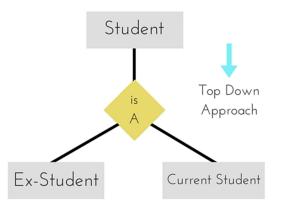
The candidate keys which are not selected for primary key are known as secondary keys or alternative keys.

Foreign Key

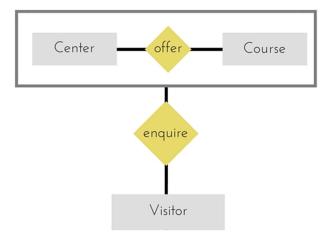

A foreign key is a key used to link two tables together. This is sometimes also called as a referencing key.

Composite Key

A primary key that is made up of more than one attribute is known as a composite key.


Generalization

Generalization is a bottom-up approach in which two lower level entities combine to form a higher level entity. In generalization, the higher level entity can also combine with other lower level entity to make further higher level entity.


Specialization

Specialization is opposite to Generalization. It is a top-down approach in which one higher level entity can be broken down into two lower level entities. In specialization, some higher level entities may not have lower-level entity sets at all.

Aggregation

Aggregation is a process when relation between two entities is treated as a single entity. Here the relation between Center and Course is acting as an Entity in relation with Visitor.

Relational Algebra

The relational algebra is a procedural query language. It consists of a set of operations that take one or two relations as input and produces a new relation as output.

Fundamental Operations

- SELECT
- PROJECT
- UNION
- SET DIFFERENCE
- CARTESIAN PRODUCT
- RENAME

Select Operation (σ)

It selects tuples that satisfy the given predicate from a relation.

Notation:- $\sigma_p(r)$

Project Operation (∏)

It projects column(s) that satisfy a given predicate.

Notation: $- \prod_{A1, A2, An} (r)$

Union Operation (U)

It performs binary union between two given relations.

Notation:- r U s

Set Difference (-)

The result of set difference operation is tuples, which are present in one relation but are not in the second relation.

Notation:- r – s

Cartesian Product (X)

Combines information of two different relations into one.

Notation:- r X s

Rename Operation (p)

The rename operation allows us to rename the output relation.

Notation: $\rho_x(E)$