Memory Management

Memory management is the functionality of an operating system which handles or manages
primary memory and moves processes back and forth between main memory and disk during
execution. Memory management keeps track of each and every memory location, regardless of
either it is allocated to some process or it is free. It checks how much memory is to be allocated
to processes. It decides which process will get memory at what time.

Memory Protection

Memory protection is a phenomenon by which we control memory access rights on a
computer. Memory protection is required to protect Operating System from the user processes
and user processes from one another.

Contiguous Memory Allocation

Main memory usually has two partitions -

Low Memory - Operating system resides in this memory.

High Memory - User processes are held in high memory.

Operating system uses the following memory allocation mechanism:

Single-Partition Allocation OR Variable Partition Method: In this type of allocation, relocation-
register scheme is used to protect user processes from each other, and from changing
operating-system code and data. Relocation register contains value of smallest physical address
whereas limit register contains range of logical addresses. Each logical address must be less
than the limit register.

Multiple-partition allocation: In this type of allocation, main memory is divided into a number
of fixed-sized partitions where each partition should contain only one process. When a partition
is free, a process is selected from the input queue and is loaded into the free partition. When
the process terminates, the partition becomes available for another process.

Memory Allocation

Each process is contained in a single contiguous section of memory. There are two methods
namely:

Fixed Partition-Method: Divide memory into fixed size partitions, where each partition has
exactly one process. The drawback is memory space unused within a partition is wasted.

(Example: when process size<partition size)

Variable Partition-Method: Divide memory into variable size partitions, depending upon the
size of the incoming process. When a process terminates, the partition becomes available for
another process. As the process complete and leave they create holes in the main memory.
Now there comes a general dynamic storage allocation problem.

Dynamic Storage-Allocation Problem

The following are the solutions to the dynamic storage allocation problem:

1. First Fit: In the first fit, partition is allocated which is first sufficient from the top of Main
Memory.

2. Best Fit: Allocate the process to the partition which is first smallest sufficient partition among
the free available partition.

3. Worst Fit: Allocate the process to the partition which is largest sufficient among the freely
available partitions available in the main memory.

4. Next Fit: Next fit is similar to the first fit but it will search for the first sufficient partition from
the last allocation point.

Logical and Physical address space

relocation
register
14000
logical physical
address address
CPU >+ memory
346 __/ 14346

MMU

Sr. Basis of Logical Address Physical Address
No. Comparison
1. Basic It is the virtual address generated The physical address is a
by CPU. location in a memory unit.
2. Variation Keeps on changing. Always stays the same.
3. Visibility The user can view the logical The user can never view
address of a program. physical address of program.
4, Access The user uses the logical address to | The user can not directly
access the physical address. access physical address.
5. Generation The Logical Address is generated by | Physical Address is Computed
the CPU. by MMU.
Swapping

Operating
System
Swap in -
%+ P2 ‘
Main | Swap out]1;‘
Memory ™)
Secondary
Memory
Swapping

Swapping is mechanism in which a process can be swapped temporarily out of main memory

(or move) to secondary storage (disk) and make that memory available to other processes. At

some later time, the system swaps back the process from the secondary storage to main

memory. Swapping is used for improving the performance of the system. In this the process

those are waiting for some input and output are transferred to the physical memory from they

are running and the processes those are ready for the execution will be execute by the CPU.

Fragmentation

Fragmentation occurs in a dynamic memory allocation system when most of the free blocks are

too small to satisfy any request. It is generally termed as inability to use the available memory.

Types of Fragmentation

External Fragmentation: External Fragmentation happens when a dynamic memory allocation

algorithm allocates some memory and a small piece is left over that cannot be effectively used.

Internal Fragmentation: Internal fragmentation is the space wasted inside of allocated memory
blocks because of restriction on the allowed sizes of allocated blocks.

Fragmented memory before compaction

Memory after compaction

Compaction is a process in which the free space is collected in a large memory chunk to make

Compaction

some space available for processes. Compaction refers to combining all the empty spaces
together and processes. Compaction helps to solve the problem of fragmentation, but it
requires too much of CPU time.

Paging

Paging is a memory management technique in which the memory is divided into fixed size
pages. Paging is used for faster access to data. When a program needs a page, it is available in
the main memory as the OS copies a certain number of pages from your storage device to main
memory. Paging allows the physical address space of a process to be noncontiguous.

Segmentation

Segmentation is another memory management technique in which each job is divided into
several segments of different sizes, one for each module that contains pieces that perform
related functions. Each segment is actually a different logical address space of the program.

Segmentation memory management works very similar to paging but here segments are of
variable-length where as in paging pages are of fixed size.

Virtual Memory

Virtual Address Physical Address
0 A Lo 0

4K B — aK c
8K c r 8K
12K D ™ 12K

16K 3 w— 16K B
20K

— 24K A

el D |
[e]

Secondary Memory

A computer can address more memory than the amount physically installed on the system. This
extra memory is actually called virtual memory.

Virtual Memory is a space where large programs can store themselves in form of pages while
their execution and only the required pages or portions of processes are loaded into the main
memory. Virtual Memory is implanted by Demand Paging.

Demand Paging

Demand paging is a type of swapping done in virtual memory systems. In demand paging, the
data is not copied from the disk to the RAM until they are needed or being demanded by some
program. The data will not be copied when the data is already available on the memory.

Pure Demand Paging

In pure demand paging, even a single page is not loaded into memory initially. Hence pure
demand paging causes a page fault. Page fault is the situation in which the page is not available
whenever a processor needs to execute it.

Page Replacement Algorithm

Page replacement algorithms are the techniques using which an Operating System decides
which memory pages to swap out, write to disk when a page of memory needs to be allocated.

Page Fault

A page fault is a type of interrupt, raised by the hardware when a running program accesses a
memory page that is mapped into the virtual address space, but not loaded in physical memory.

Reference String

The string of memory references is called reference string. Reference strings are generated
artificially or by tracing a given system and recording the address of each memory reference.

Types of Page Replacement Algorithm

First In First Out

This is the simplest page replacement algorithm. In this algorithm, operating system keeps track
of all pages in the memory in a queue, oldest page is in the front of the queue.

ReferenceString:0,2,1,6,4,0,1,0,3,1,2,1

Misses S X RN K XXX
0 4 4 4 4 2

4 0
2) 2 . 0 3 ', 0 1 \ 0 2 . 0
1 1 1 3 3 3
6 6 6 6 1 1
FaultRate=9/12 =0.75

Optimal Page replacement

In this algorithm, pages are replaced which are not used for the longest duration of time in the
future.

ReferenceString:0,2,1,6,4,0,1,0,3,1,2,1

Misses XXX X X
0 0 3
4 3
2 — 2 — 2
1 1 1
6 4 4

FaultRate=6/12 =0.50

Least Recently Used

In this algorithm page will be replaced which is least recently used.

ReferenceString:0,2,1,6,4,0,1,0,3,1,2,1
Misses D & §b I5 85 B < X X
0 4 4 4 2
4 0
2) 2 \ 0 3 \ 0 2 . 0
3 L 1 1 1 1
6 6 6 3 3
FaultRate=8/12 =0.67

