
 PHP

Server side scripting vs. Client side scripting

1. Server side scripting is used to create dynamic

pages based a number of conditions when the
users browser makes a request to the server.

2. The Web Server executes the server side

scripting that produces the page to be sent to
the browser.

3. Server executes server-side scripts to send out

a page but it does not execute client-side
scripts.

4. Server side scripting is used to connect to the

databases that reside on the web server.

5. Server side scripting can access the file system

residing at the web server.

6. Server side scripting can’t be blocked by the

user.

7. Response from a server-side script is slower as

compared to a client-side script because the
scripts are processed on the remote
computer.

8. Examples of Server side scripting languages :

PHP, JSP, ASP, ASP.Net, Ruby, Perl n many
more.

1. Client side scripting is used when the

users browser already has all the code and
the page is altered on the basis of the
users input.

2.
The Web Browser executes the client side
scripting that resides at the user’s
computer.

3. The browser receives the page sent by the
server and executes the client-side scripts.

4.
 Client side scripting cannot be used to
connect to the databases on the web
server.

5. Client side scripting can’t access the file
system that resides at the web server.

6. Client side scripting is possible to be
blocked by the user.

7.
Response from a client-side script is faster
as compared to a server-side script
because the scripts are processed on the
local computer.

8. Examples of Client side scripting
languages : Javascript, VB script, etc.

 FEATURES OF PHP

The main features of php is; it is open source scripting language so you can free

download this and use. PHP is a server site scripting language. It is open source scripting

language. It is widely used all over the world. It is faster than other scripting language.

Some important features of php are given below;

Features of php

It is most popular and frequently used world wide scripting language, the main reason of

popularity is; It is open source and very simple.

• Simple
• Faster
• Interpreted
• Open Source
• Case Sensitive
• Simplicity
• Efficiency

• Platform Independent
• Security
• Flexibility
• Familiarity

Simple

It is very simple and easy to use, compare to other scripting language it is very simple

and easy, this is widely used all over the world.

Interpreted

It is an interpreted language, i.e. there is no need for compilation.

Faster

It is faster than other scripting language e.g. asp and jsp.

Open Source

Open source means you no need to pay for use php, you can free download and use.

Platform Independent

PHP code will be run on every platform, Linux, Unix, Mac OS X, Windows.

Case Sensitive

PHP is case sensitive scripting language at time of variable declaration. In PHP, all

keywords (e.g. if, else, while, echo, etc.), classes, functions, and user-defined functions

are NOT case-sensitive.

 Variable in PHP

Variable is an identifier which holds data or another one variable and whose value can

be changed at the execution time of script. In PHP, a variable starts with the $ sign,

followed by the name of the variable.

Syntax
$variablename=value;

Example

<?php

$txt = "Hello world!";

$x = 5;

$y = 10.5;

?>

 PHP Variables Scope

In PHP, variables can be declared anywhere in the script.

The scope of a variable is the part of the script where the variable can be referenced/used.

PHP has three different variable scopes:

• local
• global
• static

Global and Local Scope

A variable declared outside a function has a GLOBAL SCOPE and can only be accessed

outside a function:

Example

<?php

$x = 5; // global scope

function myTest() {

 // using x inside this function will generate an error

 echo "<p>Variable x inside function is: $x</p>";

}

myTest();

echo "<p>Variable x outside function is: $x</p>";

?>

A variable declared within a function has a LOCAL SCOPE and can only be accessed

within that function:

Example

<?php

function myTest() {

 $x = 5; // local scope

 echo "<p>Variable x inside function is: $x</p>";

}

myTest();

// using x outside the function will generate an error

echo "<p>Variable x outside function is: $x</p>";

?>

PHP The static Keyword

Normally, when a function is completed/executed, all of its variables are deleted.

However, sometimes we want a local variable NOT to be deleted. We need it for a further

job.

To do this, use the static keyword when you first declare the variable:

Example

<?php

function myTest() {

 static $x = 0;

 echo $x;

 $x++;

}

myTest();

myTest();

myTest();

?>

 Constant

A constant is a name or an identifier for a simple value. A constant value cannot change
during the execution of the script. By default, a constant is case-sensitive. By
convention, constant identifiers are always uppercase. A constant name starts with a
letter or underscore, followed by any number of letters, numbers, or underscores. If you
have defined a constant, it can never be changed or undefined.

constant() function

As indicated by the name, this function will return the value of the constant.

This is useful when you want to retrieve value of a constant, but you do not know its name, i.e. It

is stored in a variable or returned by a function.

constant() example
<?php

 define("MINSIZE", 50);

 echo MINSIZE;

 echo constant("MINSIZE"); // same thing as the previous line

?>

Differences between constants and variables are

• There is no need to write a dollar sign ($) before a constant, where as in Variable one has

to write a dollar sign.

• Constants cannot be defined by simple assignment, they may only be defined using the

define() function.

• Constants may be defined and accessed anywhere without regard to variable scoping

rules.

• Once the Constants have been set, may not be redefined or undefined.

PHP Data Types

Variables can store data of different types, and different data types can do different

things.

PHP supports the following data types:

• String
• Integer
• Float (floating point numbers - also called double)
• Boolean
• Array
• Object
• NULL
• Resource

PHP String

A string is a sequence of characters, like "Hello world!".

A string can be any text inside quotes. You can use single or double quotes:

Example

<?php

$x = "Hello world!";

$y = 'Hello world!';

echo $x;

echo "
";

echo $y;

?>

PHP Integer

An integer data type is a non-decimal number between -2,147,483,648 and 2,147,483,647.

Rules for integers:

• An integer must have at least one digit

• An integer must not have a decimal point
• An integer can be either positive or negative
• Integers can be specified in three formats: decimal (10-based), hexadecimal (16-based - prefixed

with 0x) or octal (8-based - prefixed with 0)

In the following example $x is an integer. The PHP var_dump() function returns the data type

and value:

Example

<?php

$x = 5985;

var_dump($x);

?>

PHP Float

A float (floating point number) is a number with a decimal point or a number in exponential

form.

In the following example $x is a float. The PHP var_dump() function returns the data type and

value:

Example

<?php

$x = 10.365;

var_dump($x);

?>

PHP Boolean

A Boolean represents two possible states: TRUE or FALSE.

$x = true;

$y = false;

Booleans are often used in conditional testing. You will learn more about conditional testing in a

later chapter of this tutorial.

PHP Array

An array stores multiple values in one single variable.

In the following example $cars is an array. The PHP var_dump() function returns the data type

and value:

Example

<?php

$cars = array("Volvo","BMW","Toyota");

var_dump($cars);

?>

You will learn a lot more about arrays in later chapters of this tutorial.

PHP Object

An object is a data type which stores data and information on how to process that data.

In PHP, an object must be explicitly declared.

First we must declare a class of object. For this, we use the class keyword. A class is a structure

that can contain properties and methods:

Example

<?php

class Car {

 function Car() {

 $this->model = "VW";

 }

}

// create an object

$herbie = new Car();

// show object properties

echo $herbie->model;

?>

PHP NULL Value

Null is a special data type which can have only one value: NULL.

A variable of data type NULL is a variable that has no value assigned to it.

Tip: If a variable is created without a value, it is automatically assigned a value of NULL.

Variables can also be emptied by setting the value to NULL:

Example

<?php

$x = "Hello world!";

$x = null;

var_dump($x);

?>

PHP Operators

Operators are used to perform operations on variables and values.

PHP divides the operators in the following groups:

• Arithmetic operators
• Assignment operators
• Comparison operators
• Increment/Decrement operators
• Logical operators

PHP Arithmetic Operators

The PHP arithmetic operators are used with numeric values to perform common arithmetical

operations, such as addition, subtraction, multiplication etc.

Operator Name Example Result Show it

+ Addition $x + $y Sum of $x and $y

- Subtraction $x - $y Difference of $x and $y

* Multiplication $x * $y Product of $x and $y

/ Division $x / $y Quotient of $x and $y

% Modulus $x % $y Remainder of $x divided by $y

** Exponentiation $x ** $y Result of raising $x to the $y'th power (Introduced in PHP 5.6)

PHP Assignment Operators

The PHP assignment operators are used with numeric values to write a value to a variable.

The basic assignment operator in PHP is "=". It means that the left operand gets set to the value

of the assignment expression on the right.

Assignment Same as... Description Show it

x = y x = y
The left operand gets set to the value of the expression

on the right

x += y x = x + y Addition

x -= y x = x - y Subtraction

x *= y x = x * y Multiplication

x /= y x = x / y Division

x %= y x = x % y Modulus

PHP Comparison Operators

The PHP comparison operators are used to compare two values (number or string):

Operator Name Example Result Show it

== Equal $x == $y Returns true if $x is equal to $y

=== Identical
$x ===

$y
Returns true if $x is equal to $y, and they are of the same type

!= Not equal $x != $y Returns true if $x is not equal to $y

<> Not equal $x <> $y Returns true if $x is not equal to $y

!== Not identical $x !== $y
Returns true if $x is not equal to $y, or they are not of the same

type

> Greater than $x > $y Returns true if $x is greater than $y

< Less than $x < $y Returns true if $x is less than $y

>=
Greater than or equal

to
$x >= $y Returns true if $x is greater than or equal to $y

<= Less than or equal to $x <= $y Returns true if $x is less than or equal to $y

PHP Increment / Decrement Operators

The PHP increment operators are used to increment a variable's value.

The PHP decrement operators are used to decrement a variable's value.

Operator Name Description Show it

++$x Pre-increment Increments $x by one, then returns $x

$x++ Post-increment Returns $x, then increments $x by one

--$x Pre-decrement Decrements $x by one, then returns $x

$x-- Post-decrement Returns $x, then decrements $x by one

PHP Logical Operators

The PHP logical operators are used to combine conditional statements.

Operator Name Example Result Show it

and And $x and $y True if both $x and $y are true

or Or $x or $y True if either $x or $y is true

xor Xor $x xor $y True if either $x or $y is true, but not both

&& And $x && $y True if both $x and $y are true

|| Or $x || $y True if either $x or $y is true

! Not !$x True if $x is not true

PHP Conditional Statements

Very often when you write code, you want to perform different actions for different conditions.

You can use conditional statements in your code to do this.

In PHP we have the following conditional statements:

• if statement - executes some code if one condition is true
• if...else statement - executes some code if a condition is true and another code if that

condition is false
• if...elseif....else statement - executes different codes for more than two conditions
• switch statement - selects one of many blocks of code to be executed

PHP - The if Statement

The if statement executes some code if one condition is true.

Syntax

if (condition) {

 code to be executed if condition is true;

}

The example below will output "Have a good day!" if the current time (HOUR) is less than 20:

Example

<?php

$t = date("H");

if ($t < "20") {

 echo "Have a good day!";

}

?>

PHP - The if...else Statement

The if....else statement executes some code if a condition is true and another code if that

condition is false.

Syntax

if (condition) {

 code to be executed if condition is true;

} else {

 code to be executed if condition is false;

}

The example below will output "Have a good day!" if the current time is less than 20, and "Have

a good night!" otherwise:

Example

<?php

$t = date("H");

if ($t < "20") {

 echo "Have a good day!";

} else {

 echo "Have a good night!";

}

?>

PHP - The if...elseif....else Statement

The if....elseif...else statement executes different codes for more than two conditions.

Syntax

if (condition) {

 code to be executed if this condition is true;

} elseif (condition) {

 code to be executed if this condition is true;

} else {

 code to be executed if all conditions are false;

}

The example below will output "Have a good morning!" if the current time is less than 10, and

"Have a good day!" if the current time is less than 20. Otherwise it will output "Have a good

night!":

Example

<?php

$t = date("H");

if ($t < "10") {

 echo "Have a good morning!";

} elseif ($t < "20") {

 echo "Have a good day!";

} else {

 echo "Have a good night!";

}

?>

The Switch Statement

If you want to select one of many blocks of code to be executed, use the Switch

statement.

The switch statement is used to avoid long blocks of if..elseif..else code.

Syntax
switch (expression){

 case label1:

 code to be executed if expression = label1;

 break;

 case label2:

 code to be executed if expression = label2;

 break;

 default:

 code to be executed

 if expression is different

 from both label1 and label2;

}

Example

<?php

$favcolor = "red";

switch ($favcolor) {

 case "red":

 echo "Your favorite color is red!";

 break;

 case "blue":

 echo "Your favorite color is blue!";

 break;

 case "green":

 echo "Your favorite color is green!";

 break;

 default:

 echo "Your favorite color is neither red, blue, nor green!";

}

?>

 Loop

Loops in PHP are used to execute the same block of code a specified number of times. PHP

supports following four loop types.

• for − loops through a block of code a specified number of times.

• while − loops through a block of code if and as long as a specified condition is true.

• do...while − loops through a block of code once, and then repeats the loop as long as a

special condition is true.

• foreach − loops through a block of code for each element in an array.

We will discuss about continue and break keywords used to control the loops execution.

The for loop statement

The for statement is used when you know how many times you want to execute a statement or a

block of statements.

Syntax
for (initialization; condition; increment){

 code to be executed;

}

The initializer is used to set the start value for the counter of the number of loop iterations. A

variable may be declared here for this purpose and it is traditional to name it $i.

Example

The following example makes five iterations and changes the assigned value of two variables on

each pass of the loop −

Live Demo

<html>

http://tpcg.io/n7ropq

 <body>

 <?php

 $a = 0;

 $b = 0;

 for($i = 0; $i<5; $i++) {

 $a += 10;

 $b += 5;

 }

 echo ("At the end of the loop a = $a and b = $b");

 ?>

 </body>

</html>

This will produce the following result −

At the end of the loop a = 50 and b = 25

The while loop statement

The while statement will execute a block of code if and as long as a test expression is true.

If the test expression is true then the code block will be executed. After the code has executed the

test expression will again be evaluated and the loop will continue until the test expression is

found to be false.

Syntax
while (condition) {

 code to be executed;

}

Example

This example decrements a variable value on each iteration of the loop and the counter

increments until it reaches 10 when the evaluation is false and the loop ends.

Live Demo

<html>

 <body>

 <?php

 $i = 0;

 $num = 50;

 while($i < 10) {

 $num--;

 $i++;

 }

 echo ("Loop stopped at i = $i and num = $num");

 ?>

http://tpcg.io/tsLS0l

 </body>

</html>

This will produce the following result −

Loop stopped at i = 10 and num = 40

The do...while loop statement

The do...while statement will execute a block of code at least once - it then will repeat the loop as

long as a condition is true.

Syntax
do {

 code to be executed;

}

while (condition);

Example

The following example will increment the value of i at least once, and it will continue

incrementing the variable i as long as it has a value of less than 10 −

Live Demo

<html>

 <body>

 <?php

 $i = 0;

 $num = 0;

 do {

 $i++;

 }

 while($i < 10);

 echo ("Loop stopped at i = $i");

 ?>

 </body>

</html>

This will produce the following result −

Loop stopped at i = 10

http://tpcg.io/glAjbK

The foreach loop statement

The foreach statement is used to loop through arrays. For each pass the value of the current array

element is assigned to $value and the array pointer is moved by one and in the next pass next

element will be processed.

Syntax
foreach (array as value) {

 code to be executed;

}

Example

Try out following example to list out the values of an array.

Live Demo

<html>

 <body>

 <?php

 $array = array(1, 2, 3, 4, 5);

 foreach($array as $value) {

 echo "Value is $value
";

 }

 ?>

 </body>

</html>

This will produce the following result −

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

 Jumping Statements

The break statement

The PHP break keyword is used to terminate the execution of a loop prematurely.

The break statement is situated inside the statement block. It gives you full control and

whenever you want to exit from the loop you can come out. After coming out of a loop

immediate statement to the loop will be executed.

http://tpcg.io/FA1hw2

Example

In the following example condition test becomes true when the counter value reaches 3 and loop

terminates.

Live Demo

<html>

 <body>

 <?php

 $i = 0;

 while($i < 10) {

 $i++;

 if($i == 3)break;

 }

 echo ("Loop stopped at i = $i");

 ?>

 </body>

</html>

This will produce the following result −

Loop stopped at i = 3

The continue statement

The PHP continue keyword is used to halt the current iteration of a loop but it does not terminate

the loop.

http://tpcg.io/dQeDDw

Just like the break statement the continue statement is situated inside the statement block

containing the code that the loop executes, preceded by a conditional test. For the pass

encountering continue statement, rest of the loop code is skipped and next pass starts.

Example

In the following example loop prints the value of array but for which condition becomes true it

just skip the code and next value is printed.

Live Demo

<html>

 <body>

 <?php

 $array = array(1, 2, 3, 4, 5);

 foreach($array as $value) {

 if($value == 3)continue;

 echo "Value is $value
";

 }

 ?>

 </body>

</html>

This will produce the following result −

Value is 1

Value is 2

Value is 4

Value is 5

http://tpcg.io/Maa3wb

 Array

An array is a data structure that stores one or more similar type of values in a single value. For

example if you want to store 100 numbers then instead of defining 100 variables its easy to

define an array of 100 length.

There are three different kind of arrays and each array value is accessed using an ID c which is

called array index.

• Numeric array − An array with a numeric index. Values are stored and accessed in

linear fashion.

• Associative array − An array with strings as index. This stores element values in

association with key values rather than in a strict linear index order.

• Multidimensional array − An array containing one or more arrays and values are

accessed using multiple indices

NOTE − Built-in array functions is given in function reference PHP Array Functions

Numeric Array

These arrays can store numbers, strings and any object but their index will be represented by

numbers. By default array index starts from zero.

Example

Following is the example showing how to create and access numeric arrays.

Here we have used array() function to create array. This function is explained in function

reference.

Live Demo

<html>

 <body>

 <?php

 /* First method to create array. */

 $numbers = array(1, 2, 3, 4, 5);

 foreach($numbers as $value) {

 echo "Value is $value
";

 }

 /* Second method to create array. */

 $numbers[0] = "one";

 $numbers[1] = "two";

https://www.tutorialspoint.com/php/php_array_functions.htm
http://tpcg.io/X30tPl

 $numbers[2] = "three";

 $numbers[3] = "four";

 $numbers[4] = "five";

 foreach($numbers as $value) {

 echo "Value is $value
";

 }

 ?>

 </body>

</html>

This will produce the following result −

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

Value is one

Value is two

Value is three

Value is four

Value is five

Associative Arrays

The associative arrays are very similar to numeric arrays in term of functionality but they are

different in terms of their index. Associative array will have their index as string so that you can

establish a strong association between key and values.

To store the salaries of employees in an array, a numerically indexed array would not be the best

choice. Instead, we could use the employees names as the keys in our associative array, and the

value would be their respective salary.

NOTE − Don't keep associative array inside double quote while printing otherwise it would not

return any value.

Example

Live Demo

<html>

 <body>

 <?php

 /* First method to associate create array. */

 $salaries = array("mohammad" => 2000, "qadir" => 1000, "zara" =>

500);

 echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

 echo "Salary of qadir is ". $salaries['qadir']. "
";

 echo "Salary of zara is ". $salaries['zara']. "
";

http://tpcg.io/7qCRbI

 /* Second method to create array. */

 $salaries['mohammad'] = "high";

 $salaries['qadir'] = "medium";

 $salaries['zara'] = "low";

 echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

 echo "Salary of qadir is ". $salaries['qadir']. "
";

 echo "Salary of zara is ". $salaries['zara']. "
";

 ?>

 </body>

</html>

This will produce the following result −

Salary of mohammad is 2000

Salary of qadir is 1000

Salary of zara is 500

Salary of mohammad is high

Salary of qadir is medium

Salary of zara is low

Multidimensional Arrays

A multi-dimensional array each element in the main array can also be an array. And each

element in the sub-array can be an array, and so on. Values in the multi-dimensional array are

accessed using multiple index.

Example

In this example we create a two dimensional array to store marks of three students in three

subjects −

This example is an associative array, you can create numeric array in the same fashion.

Live Demo

<html>

 <body>

 <?php

 $marks = array(

 "mohammad" => array (

 "physics" => 35,

 "maths" => 30,

 "chemistry" => 39

),

 "qadir" => array (

 "physics" => 30,

 "maths" => 32,

 "chemistry" => 29

http://tpcg.io/7Itd7K

),

 "zara" => array (

 "physics" => 31,

 "maths" => 22,

 "chemistry" => 39

)

);

 /* Accessing multi-dimensional array values */

 echo "Marks for mohammad in physics : " ;

 echo $marks['mohammad']['physics'] . "
";

 echo "Marks for qadir in maths : ";

 echo $marks['qadir']['maths'] . "
";

 echo "Marks for zara in chemistry : " ;

 echo $marks['zara']['chemistry'] . "
";

 ?>

 </body>

</html>

This will produce the following result −

Marks for mohammad in physics : 35

Marks for qadir in maths : 32

Marks for zara in chemistry : 39

