
CHAPTER

3
ADO.NET Managed Providers

IN THIS CHAPTER
• The Two Managed Providers 51

• Managed Connections 51

• Managed Commands 55

• The DataReader 59

• Managed Commands with Stored
Procedures 64

• The DataAdapter 67

• Table and Column Mappings 79

• Summary 82

06 1068 ch03 8/24/01 12:18 PM Page 49

In the last chapter, you began looking at how an ASP.NET data-driven solution works. You
looked at the ADO.NET object model, and how to build a DataSet dynamically. In this chap-
ter, you’ll dig into the two data access Managed Providers offered in ADO.NET: the SQL
Managed Provider and the OleDB Managed Provider.

In this chapter, you’ll learn the following:

• How the .NET Managed Providers are a bridge from the application, such as an
ASP.NET Web Form, to a data store, such as Microsoft SQL Server.

• How to create Managed Connections to connect to a data store.

• How to use Managed Commands to execute SQL statements on a database.

• How to use DataAdapters to retrieve data and populate a DataSet.

• How to create custom table and column mappings.

Managed Providers, as shown in Figure 3.1, are ADO.NET’s bridge from an application, such
as an ASP.NET Web Form to the data source. Data sources include Microsoft’s SQL Server,
Access, Oracle, or any other such data storage device.

Reading and Displaying Data

PART II
50

Data Set

Win Forms

Data Set

Web Forms

Data Set

Data Object (Class)

Business Tier Data Tier

Business to Business

Presentation Tier

A
D

O
.N

E
T

 M
anaged P

rovider

FIGURE 3.1
Managed Providers are the bridge from a data store to a .NET application.

The Managed Providers have four core components:

• Connection

The Connection represents a unique session to a data store. This might be manifested as
a network connection in a client/server database application.

06 1068 ch03 8/24/01 12:18 PM Page 50

• Command

The Command represents a SQL statement to be executed on a data store.

• DataReader

The DataReader is a forward-only, read-only stream of data records from a data store to
a client.

• DataAdapter

The DataAdapter represents a set of Commands and a Connection which are used to
retrieve data from a data store and fill a DataSet.

The Two Managed Providers
ADO.NET, the successor to Microsoft’s highly successful ActiveX Data Objects (ADO), offers
two Managed Providers. These providers are similar in their object model, but are chosen at
design-time based on the data provider being used. The SQL Managed Provider offers a direct
link into Microsoft’s SQL Server database application (version 7.0 or higher), while the OleDb
Managed Provider is used for all other data providers. Following is a brief description of each
of the Managed Providers. Throughout this chapter we will show you how the Managed
Providers work, and specify when a particular object, property, method or event is unique to
only one of the Managed Providers.

OleDb Managed Provider
The OleDb Managed Provider uses native OLEDB and COM Interop to establish a connection
to a data store and negotiate commands. The OleDb Managed Provider is the data access
provider to use when you are working with data from any data source that is not Microsoft’s
SQL Server 7.0 or higher. To use the OleDb Managed Provider, you must import the
System.Data.OleDb namespace.

SQL Managed Provider
The SQL Managed Provider is designed to work directly with Microsoft SQL Server 7.0 or
greater. It connects and negotiates directly with SQL Server without using OLEDB. This pro-
vides a better performance model than the OleDb Managed Provider, but it’s restricted to use
with Microsoft SQL Server 7.0 or higher. To use the SQL Managed Provider, you must import
the System.Data.SqlClient namespace.

Managed Connections
Much like classic ADO, the OleDb and SQL Managed Connection objects (OleDbConnection
and SqlConnection) provide a set of properties that might be familiar to you. These are listed
in Table 3.1. Properties that apply to only one of the Managed Providers are indicated.

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

51

06 1068 ch03 8/24/01 12:18 PM Page 51

TABLE 3.1 Managed Connection Properties

Property Description

ConnectionString Gets or sets the string used to open a data store.

ConnectionTimeout Gets or sets the time to wait while establishing a connection
before terminating the attempt and generating an error.

Container Returns the IContainer that contains the object.

Database Gets or sets the name of the current database or the database
to be used once a connection is open.

DataSource Gets or sets the name of the database to connect to.

PacketSize Gets the size of the packets the data is
(SqlConnection only) transferred in.

Provider Gets or sets the name of the
(OleDbConnection only) OLEDB provider.

ServerVersion Gets a string containing the
(SqlConnection only) version of the connected SQL Server.

Site Gets or sets the site of the component.

State Gets the current state of the connection.

OleDbConnection
The OleDb Managed Provider uses a ConnectionString property format identical to that of a
classic ADO connection object. Listing 3.1 shows how to connect to an Access 2000 database
using the OleDbConnection object.

Reading and Displaying Data

PART II
52

In the following code listing, the OleDb Managed Connection object is pointing
to an Access 2000 database file using the path, C:\Program Files\Microsoft
Office\Office\Samples\Northwind.mdb. This is the default path to the Northwind
sample database that is installed when Access 2000 is installed. The path on your
machine might vary. Alter the code as necessary.

WARNING

LISTING 3.1 Connecting to an Access 2000 Database with the OleDbConnection

[VB]

01: <%@ Page Language=”VB” %>
02: <%@ Import Namespace=”System.Data.OleDb” %>
03: <script runat=”server”>

06 1068 ch03 8/24/01 12:18 PM Page 52

LISTING 3.1 Continued

04: Sub Page_Load(Sender As Object, E As EventArgs)
05: Dim myConnection As OleDbConnection
06: myConnection = New OleDbConnection(“Provider=Microsoft.Jet.OLEDB.4.0;
➥ Data Source=C:\Program Files\Microsoft
➥ Office\Office\Samples\Northwind.mdb;”)
07: myConnection.Open()
08: ConnectionState.Text = myConnection.State.ToString()
09: myConnection.Close()
10: End Sub
11: </script>

[C#]

01: <%@ Page Language=”C#” %>
02: <%@ Import Namespace=”System.Data.OleDb” %>
03: <script runat=”server”>
04: void Page_Load(Object sender, EventArgs e){
05: OleDbConnection myConnection;
06: myConnection = new OleDbConnection(“Provider=Microsoft.Jet.OLEDB.4.0;
➥ Data Source=C:\\Program Files\\Microsoft
➥ Office\\Office\\Samples\\Northwind.mdb;”);
07: myConnection.Open();
08: ConnectionState.Text = myConnection.State.ToString();
09: myConnection.Close();
10: }
11: </script>

[VB & C#]

12: <html>
13: <body>
14: <form runat=”server” method=”post”>
15: Connection State: <asp:Label runat=”server” id=”ConnectionState” />
16: </form>
17: </body>
18: </html>

In Listing 3.1, you import the System.Data.OleDb namespace on line 2. On line 5, you declare a
variable for the OleDbConnection class and on line 6, you instantiate the OleDbConnection class,
passing in the ConnectionString as the connection’s only parameter. The ConnectionString
property specifies that the OLEDB Provider is Microsoft.Jet.OLEDB.4.0, the provider neces-
sary to connect to an Access 2000 database.

On line 7 you open the connection with the Open() method of the OleDbConnection class. On
line 8 you set the Text property of an ASP.NET Label to the string representation of the State
property of the OleDbConnection class.

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

53

06 1068 ch03 8/24/01 12:18 PM Page 53

Reading and Displaying Data

PART II
54

In the C# example in Listing 3.1 you will notice that the ConnectionString property
of the Managed Connection object uses a double slash (\\) between the tree hierar-
chy of the path to the Northwind sample database file. This is because C# treats the
slash (\) as an escape character in a string. Using a double slash (\\) lets the compiler
know that you really want to use a slash character in that spot.

WARNING

SqlConnection
The SQL Managed Provider uses a ConnectionString property format that’s similar to that of
a classic ADO connection object. Since you know what the database application is from using
the SQL Managed Provider, the Provider property isn’t required (it isn’t even allowed, for that
matter). Listing 3.2 shows sample code for connecting to a Microsoft SQL Server database
using the SqlConnection object.

LISTING 3.2 Connecting to a SQL Server Database with the SqlConnection

[VB]

01: <%@ Page Language=”VB” %>
02: <%@ Import Namespace=”System.Data.SqlClient” %>
03: <script runat=”server”>
04: Sub Page_Load(Sender As Object, E As EventArgs)
05: Dim myConnection As SqlConnection
06: myConnection = New SqlConnection(“server=localhost;
➥ database=Northwind; uid=sa; pwd=;”)
07: myConnection.Open()
08: ConnectionState.Text = myConnection.State.ToString()
09: myConnection.Close()
10: End Sub
11: </script>

If you are using Access 2000 with user name and password security, you might see an
error indicating that Access can not find the installable ISAM. This error is related to
your Access 2000 installation, and not the .NET Framework. For more information, see
http://support.microsoft.com/support/kb/articles/Q209/8/05.ASP.

NOTE

06 1068 ch03 8/24/01 12:18 PM Page 54

LISTING 3.2 Continued

[C#]

01: <%@ Page Language=”C#” %>
02: <%@ Import Namespace=”System.Data.SqlClient” %>
03: <script runat=”server”>
04: void Page_Load(Object sender, EventArgs e){
05: SqlConnection myConnection;
06: myConnection = new SqlConnection(“server=localhost;
➥ database=Northwind; uid=sa; pwd=;”);
07: myConnection.Open();
08: ConnectionState.Text = myConnection.State.ToString();
09: myConnection.Close();
10: }
11: </script>

[VB & C#]

12: <html>
13: <body>
14: <form runat=”server” method=”post”>
15: Connection State: <asp:Label runat=”server” id=”ConnectionState” />
16: </form>
17: </body>
18: </html>

In Listing 3.2 you create a connection to a SQL Server database. The code in Listing 3.2 is
nearly identical to that of Listing 3.1. The only two differences are on lines 2 and 6. On line 2
you import the System.Data.SqlClient namespace rather than the System.Data.OleDb name-
space. This allows you access to the SQL Managed Provider classes, like the SqlConnection
class. On line 6 you create an instance of the SqlConnection class and pass in the
ConnectionString property as the only parameter. In the ConnectionString property you do not
specify a provider since the SqlConnection is designed to connect only to a Microsoft SQL
Server database.

Managed Commands
Managed Commands represent SQL syntax to be executed on the data store. Managed
Commands can be simple SELECT statements or complex, parameterized commands.

Once a connection to a data store is established, you can retrieve, update, or insert data. One
way of accomplishing this is to use a Managed Command. This is the most direct way to exe-
cute a SQL statement on a data store.

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

55

06 1068 ch03 8/24/01 12:18 PM Page 55

As with the Managed Connection object, there are both OleDb and SQL versions of the
Managed Command—OleDbCommand and SqlCommand.

The Managed Command is similar to the classic ADO command object. In its simplest form,
you create a Managed Command with the SQL statement and the connection (as either a
ConnectionString or a Managed Connection object) as its parameters. In Listing 3.3 you
create a SqlCommand to execute a simple SELECT statement against the Northwind database.
This example will not render any output, but you will build on it in the following examples.

Reading and Displaying Data

PART II
56

For the bulk of this chapter I will be showing samples using the SQL Managed
Provider. You can use the OleDb Managed Provider by changing the Managed
Provider classes from SqlWidget to OleDbWidget. For example, in Listing 3.3 you could
use the OleDbCommand class in replacement of the SqlCommand class. Remember that
the OleDb Managed Provider uses the System.Data.OleDb namespace instead of the
System.Data.SqlClient namespace.

NOTE

LISTING 3.3 Creating a SqlCommand Object

[VB]

01: <%@ Page Language=”VB” %>
02: <%@ Import Namespace=”System.Data.SqlClient” %>
03: <script runat=”server”>
04: Sub Page_Load(Sender As Object, E As EventArgs)
05: Dim myConnection As SqlConnection
06: Dim myCommand As SqlCommand
07: myConnection = New SqlConnection(“server=localhost;
➥ database=Northwind; uid=sa; pwd=;”)
08: myCommand = New SqlCommand(“SELECT * FROM Customers”, myConnection)
09: End Sub
10: </script>

[C#]

01: <%@ Page Language=”C#” %>
02: <%@ Import Namespace=”System.Data.SqlClient” %>
03: <script runat=”server”>
04: void Page_Load(Object sender, EventArgs e){
05: SqlConnection myConnection;
06: SqlCommand myCommand;
07: myConnection = new SqlConnection(“server=localhost;
➥ database=Northwind; uid=sa; pwd=;”);
08: myCommand = new SqlCommand(“SELECT * FROM Customers”, myConnection);
09: }
10: </script>

06 1068 ch03 8/24/01 12:18 PM Page 56

LISTING 3.3 Continued

[VB & C#]

11: <html>
12: <body>
13: <form runat=”server” method=”post”>
14: <asp:DataGrid runat=”server” id=”myDataGrid” />
15: </form>
16: </body>
17: </html>

In Listing 3.3 you create a Web Form that uses the SQL Managed Provider to create a
SqlConnection and a SqlCommand. To execute the SqlCommand on the database you call
one of the provided execute methods.

• ExecuteNonQuery: Executes a SQL statement that does not return any records.

• ExecuteReader: Returns a DataReader object.

• ExecuteScalar: Executes the SQL statement and returns the first column of the first row.

• ExecuteXmlReader (SQL Managed Provider only): Executes a SQL statement and
returns the results as an XML stream.

The only thing you’re missing before calling one of the execute methods is an object to hold
the results that are returned. For this example you will use the ExecuteReader() method and
return the results as a DataReader object (SqlDataReader or OleDbDataReader). Once you
have a DataReader object you can work with the data. For now you will bind the DataReader
to a DataGrid server control. In Listing 3.4 you will use the ExecuteReader() method to
return the results of the command execution into a DataReader object.

LISTING 3.4 Executing a SqlCommand Object and Returning the Results in a DataReader

[VB]

01: <%@ Page Language=”VB” %>
02: <%@ Import Namespace=”System.Data.SqlClient” %>
03: <script runat=”server”>
04: Sub Page_Load(Sender As Object, E As EventArgs)
05: Dim myConnection As SqlConnection
06: Dim myCommand As SqlCommand
07: myConnection = New SqlConnection(“server=localhost;
➥ database=Northwind; uid=sa; pwd=;”)
08: myCommand = New SqlCommand(“SELECT * FROM Customers”, myConnection)
09: myConnection.Open()
10: Dim myDataReader As SqlDataReader = myCommand.ExecuteReader()
11: myDataGrid.DataSource = myDataReader

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

57

06 1068 ch03 8/24/01 12:18 PM Page 57

LISTING 3.4 Continued

12: myDataGrid.DataBind()
13: myConnection.Close()
14: End Sub
15: </script>

[C#]

01: <%@ Page Language=”C#” %>
02: <%@ Import Namespace=”System.Data.SqlClient” %>
03: <script runat=”server”>
04: void Page_Load(Object sender, EventArgs e){
05: SqlConnection myConnection;
06: SqlCommand myCommand;
07: myConnection = new SqlConnection(“server=localhost;
➥ database=Northwind; uid=sa; pwd=;”);
08: myCommand = new SqlCommand(“SELECT * FROM Customers”, myConnection);
09: myConnection.Open();
10: SqlDataReader myDataReader = myCommand.ExecuteReader();
11: myDataGrid.DataSource = myDataReader;
12: myDataGrid.DataBind();
13: myConnection.Close();
14: }
15: </script>

[VB & C#]

16: <html>
17: <body>
18: <form runat=”server” method=”post”>
19: <asp:DataGrid runat=”server” id=”myDataGrid” />
20: </form>
21: </body>
22: </html>

In Listing 3.4 you extend the code in Listing 3.3 to execute the SqlCommand object using the
ExecuteReader() method. Since this method returns the results in a DataReader object, you
first create an instance of the SqlDataReader class on line 10, and set it to the returned result
of the SqlCommand.ExecuteReader() method. You will notice that I create an instance of the
DataReader and assign it to the results of the ExecuteReader() on the same line. This is just
another way of constructing an object in .NET, rather than doing the same thing across two
lines of code.

Once the command has executed and the DataReader has been created, you bind the
DataReader to a DataGrid server control (line 11) by setting the DataSource property of the
DataGrid as the DataReader. Once the DataSource property is set you call the DataBind()
method of the DataGrid to bind the command results to the output of the DataGrid.

Reading and Displaying Data

PART II
58

06 1068 ch03 8/24/01 12:18 PM Page 58

Figure 3.2 shows the ASP.NET Web Form with the results from the Managed Command exe-
cution in a DataGrid.

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

59

FIGURE 3.2
Using the Managed Providers you can create a connection to a database, execute a command, and display the results
on an ASP.NET Web Form.

The DataReader
The DataReader provides a forward-only, read-only stream of data from the data store. The
DataReader is best used when either there are many records in the result set and pulling them
all in at once would use too much memory, or when you want to iterate through the records to
work with the data returned. As a stream of records, the DataReader helps manage memory
allocation. Rather than all of the records in the result set being returned at once and using up a
chunk of memory on the server, the DataReader streams in one record at a time.

You’ve seen how to execute a command against a data store, and in the previous listings, the
results weren’t too big. But imagine if your Managed Command returned a result set with over
100,000 records in it. Now imagine 1,000 users doing that all at the same time. It would use up
the memory space for 100,000,000 records of data, and that could spell disaster for your Web
application.

What would be ideal is a way to connect to the data store, bring the results back in a stream,
and evaluate those results one record at a time. Ideally, this would only use up the memory for
one record at a time.

06 1068 ch03 8/24/01 12:18 PM Page 59

This type of functionality is exactly what the DataReader provides. The DataReader is the
classic “fire hose” of data access—a forward-only, read-only stream returned from the data
store. In Listing 3.4, you bound a DataGrid server control to the DataReader. The DataGrid is
covered in depth in Chapter 5, “Using a Basic DataGrid,” and Chapter 6, “Altering DataGrid
Output.” This will set up the DataGrid to display the entire contents of the stream. However,
with a data stream, you can step through the data that’s returned very easily and decide how to
react to it.

The DataReader exposes a Read() method which advances to the next record in the stream.
Using the Read() method you can iterate through the result set evaluating or working with the
data.

[VB]

While myDataReader.Read
‘Do something with the current row

End While

[C#]

while (myDataReader.Read()){
//Do something with the current row

}

You should be able to come up with a good reason to step through the results of a command
execution and evaluate the results. This is something you’ve done relentlessly as a classic ASP
developer (does Do While Not RecordSet.EOF sound familiar?). How often have you looped
through ADO RecordSets, checking the values of a particular column and using Response.Write
on the RecordSet row if the criterion is met? Or granted access to a page if the user name and
password columns match the submitted values?

In Listing 3.5 you will use the DataReader class to iterate through the result set and add any
record with the value “USA” to a new DataTable. The DataTable and DataRow classes you
learned about in Chapter 2, “What Is ADO.NET?” are used in Listing 3.5.

LISTING 3.5 Evaluating Data with the DataReader

[VB]

01: <%@ Page Language=”VB” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: Sub Page_Load(Sender As Object, E As EventArgs)
06: Dim myConnection As SqlConnection
07: Dim myCommand As SqlCommand
08: Dim myDataTable As New DataTable
09: Dim myRow As DataRow

Reading and Displaying Data

PART II
60

06 1068 ch03 8/24/01 12:18 PM Page 60

LISTING 3.5 Continued

10:
11: myConnection = New SqlConnection(“server=localhost;
➥ database=Northwind; uid=sa; pwd=;”)
12: myCommand = New SqlCommand(“SELECT * FROM Customers”, myConnection)
13: myConnection.Open()
14: Dim myDataReader As SqlDataReader = myCommand.ExecuteReader()
15:
16: myDataTable.Columns.Add(“CustomerID”,
➥ System.Type.GetType(“System.String”))
17: myDataTable.Columns.Add(“CompanyName”,
➥ System.Type.GetType(“System.String”))
18: myDataTable.Columns.Add(“Address”,
➥ System.Type.GetType(“System.String”))
19: myDataTable.Columns.Add(“City”,
➥ System.Type.GetType(“System.String”))
20: myDataTable.Columns.Add(“Region”,
➥ System.Type.GetType(“System.String”))
21: myDataTable.Columns.Add(“Country”,
➥ System.Type.GetType(“System.String”))
22:
23: While myDataReader.Read
24: If myDataReader(“Country”) = “USA” Then
25: myRow = myDataTable.NewRow()
26: myRow(“CustomerID”) = myDataReader(“CustomerID”)
27: myRow(“CompanyName”) = myDataReader(“CompanyName”)
28: myRow(“Address”) = myDataReader(“Address”)
29: myRow(“City”) = myDataReader(“City”)
30: myRow(“Region”) = myDataReader(“Region”)
31: myRow(“Country”) = myDataReader(“Country”)
32: myDataTable.Rows.Add(myRow)
33: End If
34: End While
35:
36: myDataGrid.DataSource = myDataTable
37: myDataGrid.DataBind()
38:
39: myConnection.Close()
40: End Sub
41: </script>

[C#]

01: <%@ Page Language=”C#” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

61

06 1068 ch03 8/24/01 12:18 PM Page 61

LISTING 3.5 Continued

05: void Page_Load(Object sender, EventArgs e){
06: SqlConnection myConnection;
07: SqlCommand myCommand;
08: DataTable myDataTable = new DataTable();
09: DataRow myRow;
10:
11: myConnection = new SqlConnection(“server=localhost;
➥ database=Northwind; uid=sa; pwd=;”);
12: myCommand = new SqlCommand(“SELECT * FROM Customers”, myConnection);
13: myConnection.Open();
14: SqlDataReader myDataReader = myCommand.ExecuteReader();
15:
16: myDataTable.Columns.Add(“CustomerID”,
➥ System.Type.GetType(“System.String”));
17: myDataTable.Columns.Add(“CompanyName”,
➥ System.Type.GetType(“System.String”));
18: myDataTable.Columns.Add(“Address”,
➥ System.Type.GetType(“System.String”));
19: myDataTable.Columns.Add(“City”,
➥ System.Type.GetType(“System.String”));
20: myDataTable.Columns.Add(“Region”,
➥ System.Type.GetType(“System.String”));
21: myDataTable.Columns.Add(“Country”,
➥ System.Type.GetType(“System.String”));
22:
23: while(myDataReader.Read()){
24: if(myDataReader[“Country”].ToString() == “USA”){
25: myRow = myDataTable.NewRow();
26: myRow[“CustomerID”] = myDataReader[“CustomerID”].ToString();
27: myRow[“CompanyName”] = myDataReader[“CompanyName”].ToString();
28: myRow[“Address”] = myDataReader[“Address”].ToString();
29: myRow[“City”] = myDataReader[“City”].ToString();
30: myRow[“Region”] = myDataReader[“Region”].ToString();
31: myRow[“Country”] = myDataReader[“Country”].ToString();
32: myDataTable.Rows.Add(myRow);
33: }
34: }
35:
36: myDataGrid.DataSource = myDataTable;
37: myDataGrid.DataBind();
38:
39: myConnection.Close();
40: }
41: </script>

Reading and Displaying Data

PART II
62

06 1068 ch03 8/24/01 12:18 PM Page 62

LISTING 3.5 Continued

[VB & C#]

42: <html>
43: <body>
44: <form runat=”server” method=”post”>
45: <asp:DataGrid runat=”server” id=”myDataGrid” />
46: </form>
47: </body>
48: </html>

In Chapter 2, you read an overview of the ADO.NET Document Object Model and saw sam-
ples of creating DataTables dynamically. Listing 3.5 makes use of that knowledge. On line 08,
you create a DataTable dynamically. On lines 16–21, you add columns to the DataTable’s
Columns collection. On lines 23–34, you step through the results of the SqlCommand execu-
tion with the DataReader.Read() method. If the “Country” field is “USA”, you create a new
DataRow (line 25) and add the values of the current record in the DataReader stream to the row
(lines 26–31). On line 32, you add the new DataRow object to the DataTable’s Rows collection.
Finally, you bind the dynamically created DataTable to the DataGrid server control. You end
up with a table limited to customers in the USA, as shown in Figure 3.3.

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

63

FIGURE 3.3
You can use the DataReader.Read() method to iterate through the result set and react to the data.

06 1068 ch03 8/24/01 12:18 PM Page 63

Managed Commands with Stored Procedures
Although the example in Listing 3.5 allows you to evaluate data and output only what is
desired, a more economical way to get a restricted result set is to use a SQL statement with a
WHERE clause. Rather than querying the data store and bringing back all of the records in the
table, you can write a SQL statement or stored procedure to bring back only the data you want.
Stored procedures typically give better performance to your application than a SQL statement
passed via a command.

You can use the Managed Command to call a stored procedure. In many cases, the stored pro-
cedure will have the parameters you pass it to determine the result set, such as the country
abbreviation in the previous examples.

Listing 3.6 is the syntax for a SQL stored procedure. In the SQL Server Enterprise Manager,
create a new stored procedure in the Northwind database named GetCustomersByCountry.

Reading and Displaying Data

PART II
64

Listing 3.6 shows a stored procedure called GetCustomersByCountry. This must be
added to the Northwind database before the following samples will work.

WARNING

LISTING 3.6 GetCustomersByCountry Stored Procedure for SQL Server Northwind Database

CREATE PROCEDURE [GetCustomersByCountry]
@country varchar (50)
AS
SELECT * FROM Customers WHERE Country = @country

When using a Managed Command to execute a stored procedure you must set the CommandType
property. The default value of the CommandType property is Text. To execute a stored procedure
you set the CommandType property to CommandType.StoredProcedure and pass in the name of
the stored procedure.

Just as classic ADO command objects have a Parameters collection for passing parameters to
the stored procedure, ADO.NET Managed Command classes (SqlCommand and OleDbCommand)
also have a Parameters collection. You can call to a stored procedure, passing the required
parameters in the collection using the following steps:

1. Create a Managed Command object (SqlCommand or OleDbCommand).

2. Set the Managed Command’s CommandType property to CommandType.StoredProcedure.

3. Declare a parameter variable (SqlParameter or OleDbParameter).

06 1068 ch03 8/24/01 12:18 PM Page 64

4. Add a new instance of the parameter class to the Managed Command’s Parameters col-
lection, passing in its name and data type (SqlDbType for SqlParameter and OleDbType
for OleDbParameter—see Appendix B for a list of valid SqlDbTypes and OleDbTypes).

5. Set the parameter’s Direction property. (Optional—“Input” is the default.)

6. Set the Parameter’s Value property.

7. Repeat steps 4-6 for additional parameters.

8. Execute the Managed Command.

Listing 3.7 demonstrates these steps.

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

65

When you’re using the SqlCommand object, the names of the parameters added to
the Parameters collection must match the names of the markers in the stored proce-
dure. The SQL Managed Provider will treat the parameters as named parameters, and
it will look for markers in the stored procedure of the same name.

WARNING

LISTING 3.7 Calling a Parameterized Stored Procedure with a SqlCommand

[VB]

01: <%@ Page Language=”VB” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: Sub Page_Load(Sender As Object, E As EventArgs)
06: Dim myConnection As SqlConnection
07: Dim myCommand As SqlCommand
08: Dim myParameter As SqlParameter
09:
10: myConnection = New SqlConnection(“server=localhost;
➥ database=Northwind; uid=sa; pwd=;”)
11: myCommand = New SqlCommand(“GetCustomersByCountry”, myConnection)
12: myCommand.CommandType = CommandType.StoredProcedure
13: myParameter = myCommand.Parameters.Add(New SqlParameter(“@country”,
➥ SqlDbType.VarChar, 50))
14: myParameter.Direction = ParameterDirection.Input
15: myParameter.Value = “USA”
16: myConnection.Open()
17: Dim myDataReader As SqlDataReader = myCommand.ExecuteReader()
18:
19: myDataGrid.DataSource = myDataReader
20: myDataGrid.DataBind()
21:

06 1068 ch03 8/24/01 12:18 PM Page 65

LISTING 3.7 Continued

22: myConnection.Close()
23: End Sub
24: </script>

[C#]

01: <%@ Page Language=”C#” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: void Page_Load(Object sender, EventArgs e){
06: SqlConnection myConnection;
07: SqlCommand myCommand;
08: SqlParameter myParameter;
09:
10: myConnection = new SqlConnection(“server=localhost;
➥ database=Northwind; uid=sa; pwd=;”);
11: myCommand = new SqlCommand(“GetCustomersByCountry”, myConnection);
12: myCommand.CommandType = CommandType.StoredProcedure;
13: myParameter = myCommand.Parameters.Add(new SqlParameter(“@country”,
➥ SqlDbType.VarChar, 50));
14: myParameter.Direction = ParameterDirection.Input;
15: myParameter.Value = “USA”;
16: myConnection.Open();
17: SqlDataReader myDataReader = myCommand.ExecuteReader();
18:
19: myDataGrid.DataSource = myDataReader;
20: myDataGrid.DataBind();
21:
22: myConnection.Close();
23: }
24: </script>

[VB & C#]

25: <html>
26: <head>
27: <title>Chapter 3: Managed Providers in ADO.NET</title>
28: </head>
29: <body>
30: <form runat=”server” method=”post”>
31: <asp:DataGrid runat=”server” id=”myDataGrid” />
32: </form>
33: </body>
34: </html>

Reading and Displaying Data

PART II
66

06 1068 ch03 8/24/01 12:18 PM Page 66

In Listing 3.7, you create a SqlConnection, SqlCommand, and SqlDataReader, the same as in
previous listings. On line 8, you declare a SqlParameter object that will be used to create and
add parameters to the SqlCommand. On line 13, you instantiate the SqlParameter object and
set its name to @country, which is the same name given to the input parameter in the stored
procedure in Listing 3.6. Additionally, you set the data type to SqlDbType.VarChar, 50, as
required by the database table. On line 14, you set the SqlParameter’s direction to
ParameterDirection.Input, and you set the SqlParameter’s Value to “USA” on line 15.
Lastly, you open the connection and execute the command.

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

67

In Listing 3.5 you created a series of new DataRow objects, and assigned their
values after all the DataRows were created. The same approach can be used for
SqlParameters.

myCommand.Parameters[“@country”].Value = “USA”;

NOTE

The DataAdapter
In Chapter 2, you looked at the DataSet as a collection of DataTable objects. You used the
DataTables in the DataSet to populate one or more server controls on an ASP.NET Web Form.
The DataAdapter is the bridge between the DataSet and the data store.

Unlike the past model of connection-based data processing, the DataAdapter works on
a disconnected message-based model, revolving around and delivering chunks of info-
rmation in a disconnected fashion. The DataAdapter is made up of four command
methods, a TableMappings collection, a Command collection, and an Exception collection (for
OleDbErrors). Like the other objects in the Managed Providers, the DataAdapter comes in two
stock flavors, the SqlDataAdapter and the OleDbDataAdapter. Figure 3.4 illustrates the
DataAdapter Object Model.

Input is the default direction for a Managed Command’s parameter. There’s no
need to set a parameter’s direction to Input explicitly. Listing 3.7 demonstrated
how to set the parameter’s Direction property. The possible values are
ParameterDirection.Input and ParameterDirection.Output.

NOTE

06 1068 ch03 8/24/01 12:18 PM Page 67

Reading and Displaying Data

PART II
68

DataAdapter

SelectCommand

InsertCommand

UpdateCommand

DeleteCommand

TableMappings

TableMapping

ColumnMappings

ColumnMapping

Command

Connection

Exception

DataReader

ADOError

Properties

Parameters

Parameter

Properties

Property

FIGURE 3.4
The DataAdapter Object Model.

The primary function of a DataAdapter is to retrieve data from a data store and push it into a
DataTable in the DataSet. To complete this task, the DataAdapter requires two pieces of
information, or parameters:

• A Managed Connection

• A Select Command

The DataAdapter constructor can accept either the command and connection values as text, or
a Managed Command object as a single parameter. Listing 3.7 demonstrated constructing a
DataAdapter with text values, while Listing 3.8 demonstrates constructing the DataAdapter
with a single Managed Command.

LISTING 3.8 Creating a SqlDataAdapter with Connection and Command Text Values

[VB]

01: <%@ Page Language=”VB” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: Sub Page_Load(Sender As Object, E As EventArgs)
06: Dim myDataAdapter As SqlDataAdapter
07: Dim myDataSet As New DataSet
08: myDataAdapter = New SqlDataAdapter(“SELECT * FROM Customers”,
➥ “server=localhost; database=Northwind; uid=sa; pwd=;”)
09: myDataAdapter.Fill(myDataSet, “Customers”)

06 1068 ch03 8/24/01 12:18 PM Page 68

LISTING 3.8 Continued

10: myDataGrid.DataSource = myDataSet.Tables(“Customers”).DefaultView
11: myDataGrid.DataBind()
12: End Sub
13: </script>

[C#]

01: <%@ Page Language=”C#” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: void Page_Load(Object sender, EventArgs e){
06: SqlDataAdapter myDataAdapter;
07: DataSet myDataSet = new DataSet();
08: myDataAdapter = new SqlDataAdapter(“SELECT * FROM Customers”,
➥ “server=localhost; database=Northwind; uid=sa; pwd=;”);
09: myDataAdapter.Fill(myDataSet, “Customers”);
10: myDataGrid.DataSource = myDataSet.Tables[“Customers”].DefaultView;
11: myDataGrid.DataBind();
12: }
13: </script>

[VB & C#]

14: <html>
15: <body>
16: <form runat=”server” method=”post”>
17: <asp:DataGrid runat=”server” id=”myDataGrid” />
18: </form>
19: </body>
20: </html>

In Listing 3.8 you create an instance of the SqlDataAdapter class. When instantiating the
class, on line 8 you pass in the command and connection values as text. The DataAdapter uses
these values to create SqlCommand and SqlConnection objects behind the scenes. These objects
are used to connect to the database and retrieve the appropriate data.

In Listing 3.9 you achieve the same result as in Listing 3.8, using explicit SqlCommand and
SqlConnection objects.

LISTING 3.9 Creating an SqlDataAdapter with Connection and Command Objects

[VB]

01: <%@ Page Language=”VB” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

69

06 1068 ch03 8/24/01 12:18 PM Page 69

LISTING 3.9 Continued

04: <script runat=”server”>
05: Sub Page_Load(Sender As Object, E As EventArgs)
06: Dim myConnection As SqlConnection
07: Dim myCommand As SqlCommand
08: Dim myDataAdapter As SqlDataAdapter
09: Dim myDataSet As New DataSet
10: myConnection = New SqlConnection(“server=localhost;
➥ database=Northwind; uid=sa; pwd=;”)
11: myCommand = New SqlCommand(“SELECT * FROM Customers”, myConnection)
12: myDataAdapter = New SqlDataAdapter(myCommand)
13: myDataAdapter.Fill(myDataSet, “Customers”)
14: myDataGrid.DataSource = myDataSet.Tables(“Customers”)
15: myDataGrid.DataBind()
16: End Sub
17: </script>

[C#]

01: <%@ Page Language=”C#” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: void Page_Load(Object sender, EventArgs e){
06: SqlConnection myConnection;
07: SqlCommand myCommand;
08: SqlDataAdapter myDataAdapter;
09: DataSet myDataSet = new DataSet();
10: myConnection = new SqlConnection(“server=localhost;
➥ database=Northwind; uid=sa; pwd=;”);
11: myCommand = new SqlCommand(“SELECT * FROM Customers”, myConnection);
12: myDataAdapter = new SqlDataAdapter(myCommand);
13: myDataAdapter.Fill(myDataSet, “Customers”);
14: myDataGrid.DataSource = myDataSet.Tables[“Customers”];
15: myDataGrid.DataBind();
16: }
17: </script>

[VB & C#]

18: <html>
19: <body>
20: <form runat=”server” method=”post”>
21: <asp:DataGrid runat=”server” id=”myDataGrid” />
22: </form>
23: </body>
24: </html>

Reading and Displaying Data

PART II
70

06 1068 ch03 8/24/01 12:18 PM Page 70

In Listing 3.9 you explicitly create SqlCommand and SqlConnection objects. The SqlConnection
object is used when constructing the SqlCommand object, and the SqlCommand object is passed
into the SqlDataAdapter when it is instantiated.

While this might seem logical, it is more efficient to create the DataAdapter using the text val-
ues. The DataAdapter will manage the creation and destruction of the connection and com-
mand objects it requires. The explicit creation of these objects is only useful if you will be
using either or both of them again, separate of the DataAdapter.

DataAdapter.Fill() Method
In Listings 3.8 and 3.9, you used various techniques and languages to create an instance of the
Managed Provider DataAdapter. In one fashion or another, you created the DataAdapter and
passed it values for the SelectCommand and Connection properties (either as inline values or as
objects). Once the DataAdapter was created, the Fill() method of the DataAdapter was
called.

The DataAdapter.Fill() method is like the switch that makes it go. Up until the Fill()
method is called, the DataAdapter is idle. When the Fill() method is called, the connection
to the database is made, and the SQL statement is executed. The results from the execution are
filled into a DataSet, specified as a parameter of the Fill() method.

Specifying only a DataSet to fill the result set will cause a new DataTable object to be created
in the DataSet. The DataTable is then accessible by its index value.

DataAdapter.Fill([DataSet])
DataGrid.DataSource = DataSet.Tables(0)

Optionally, you can also pass in a string value representing the name you would like assigned
to the DataTable that is created. This makes your code easier to follow and more readable, as
you can then access the DataTable by name rather than by its index value.

DataAdapter.Fill([DataSet], “[Table Name]”)

DataGrid.DataSource = DataSet.Tables(“[Table Name]”)

On line 13 of Listing 3.9 you invoke the Fill() method of the DataAdapter and fill the results
of the executed SQL statement into an empty DataSet, creating a new DataTable named
“Customers”.

When the Fill() method is invoked, the bridge to the data store is extended. Then the data is
retrieved and brought back to the calling application in the form of an XML file. This XML
file is materialized as a DataTable in the DataSet you specified. The DataTable schema
(table/column/primary key definitions) will be created automatically based on the schema of
the database. Figure 3.5 illustrates the process when you’re invoking the DataAdapter.Fill()
method.

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

71

06 1068 ch03 8/24/01 12:18 PM Page 71

Reading and Displaying Data

PART II
72

Data Tier

Web Forms

Presentation Tier

DataAdapter.Fill()
XML

FIGURE 3.5
Invoking the Fill() method of the DataAdapter class causes a bridge to be extended to the data store and the results to
be returned to the calling application in the form of an XML file. The XML file is materialized as a DataTable in a
DataSet.

While the Fill() method will create the DataTable dynamically, it can also fill an existing
DataTable that you create explicitly, as shown in Listing 3.10.

LISTING 3.10 Using the DataAdapter with an Existing DataTable

[VB]

01: <%@ Page Language=”VB” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: Sub Page_Load(Sender As Object, E As EventArgs)
06: Dim myDataAdapter As SqlDataAdapter
07: Dim myDataSet As New DataSet
08:
09: myDataSet.Tables.Add(New DataTable(“Customers”))
10: myDataSet.Tables(“Customers”).Columns.Add(“CompanyName”,
➥ System.Type.GetType(“System.String”))
11: myDataSet.Tables(“Customers”).Columns.Add(“ContactName”,
➥ System.Type.GetType(“System.String”))
12: myDataSet.Tables(“Customers”).Columns.Add(“Region”,
➥ System.Type.GetType(“System.String”))
13:
14: myDataAdapter = New SqlDataAdapter(“SELECT
➥ CompanyName, ContactName, Region FROM Customers”,
➥ “server=localhost; database=Northwind; uid=sa; pwd=;”)
15: myDataAdapter.Fill(myDataSet, “Customers”)
16: myDataGrid.DataSource = myDataSet.Tables(“Customers”)
17: myDataGrid.DataBind()
18: End Sub
19: </script>

06 1068 ch03 8/24/01 12:18 PM Page 72

LISTING 3.10 Continued

[C#]

01: <%@ Page Language=”C#” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: void Page_Load(Object sender, EventArgs e){
06: SqlDataAdapter myDataAdapter;
07: DataSet myDataSet = new DataSet();
08:
09: myDataSet.Tables.Add(new DataTable(“Customers”));
10: myDataSet.Tables[“Customers”].Columns.Add(“CompanyName”,
➥ System.Type.GetType(“System.String”));
11: myDataSet.Tables[“Customers”].Columns.Add(“ContactName”,
➥ System.Type.GetType(“System.String”));
12: myDataSet.Tables[“Customers”].Columns.Add(“Region”,
➥ System.Type.GetType(“System.String”));
13:
14: myDataAdapter = new SqlDataAdapter(“SELECT
➥ CompanyName, ContactName, Region FROM Customers”,
➥ “server=localhost; database=Northwind; uid=sa; pwd=;”);
15: myDataAdapter.Fill(myDataSet, “Customers”);
16: myDataGrid.DataSource = myDataSet.Tables[“Customers”];
17: myDataGrid.DataBind();
18: }
19: </script>

[VB & C#]

20: <html>
21: <body>
22: <form runat=”server” method=”post”>
23: <asp:DataGrid runat=”server” id=”myDataGrid” />
24: </form>
25: </body>
26: </html>

In Listing 3.10 you create a DataTable explicitly on lines 9–12. Using the Fill() method of the
DataAdapter you fill this newly created DataTable with the results from the SQL statement exe-
cution. This is done by calling the Fill() method and passing in the DataSet and DataTable
name for the DataTable you just created. If data already exists in the DataTable, then the Fill()
method will update, or add rows to the DataTable. You can use the same DataAdapter, change
its SelectCommand.CommandText property, and invoke the Fill() method again. In Listing 3.11
you use the DataAdapter to return two different result sets from similar SQL statements. You use
the Fill() method to add the records to the same DataTable in the DataSet.

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

73

06 1068 ch03 8/24/01 12:18 PM Page 73

LISTING 3.11 Using the Fill() Method to Add Records to a DataTable

[VB]

01: <%@ Page Language=”VB” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: Sub Page_Load(Sender As Object, E As EventArgs)
06: Dim myDataAdapter As SqlDataAdapter
07: Dim myDataSet As New DataSet
08:
09: myDataSet.Tables.Add(New DataTable(“Customers”))
10: myDataSet.Tables(“Customers”).Columns.Add(“CompanyName”,
➥ System.Type.GetType(“System.String”))
11: myDataSet.Tables(“Customers”).Columns.Add(“ContactName”,
➥ System.Type.GetType(“System.String”))
12: myDataSet.Tables(“Customers”).Columns.Add(“Region”,
➥ System.Type.GetType(“System.String”))
13:
14: myDataAdapter = new SqlDataAdapter(“GetCustomersByCountry”,
➥ “server=localhost; database=Northwind; uid=sa; pwd=;”)
15: myDataAdapter.SelectCommand.CommandType = CommandType.StoredProcedure
16: myDataAdapter.SelectCommand.Parameters.Add(new
➥ SqlParameter(“@country”, SqlDbType.VarChar, 50))
17: myDataAdapter.SelectCommand.Parameters(“@country”).Value = “Canada”
18: myDataAdapter.Fill(myDataSet, “Customers”)
19:
20: myDataAdapter.SelectCommand.Parameters(“@country”).Value = “Spain”
21: myDataAdapter.Fill(myDataSet, “Customers”)
22:
23: myDataGrid.DataSource = myDataSet.Tables(“Customers”)
24: myDataGrid.DataBind()
25: End Sub
26: </script>

[C#]

01: <%@ Page Language=”C#” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: void Page_Load(Object sender, EventArgs e){
06: SqlDataAdapter myDataAdapter;
07: DataSet myDataSet = new DataSet();
08:
09: myDataSet.Tables.Add(new DataTable(“Customers”));

Reading and Displaying Data

PART II
74

06 1068 ch03 8/24/01 12:18 PM Page 74

LISTING 3.11 Continued

10: myDataSet.Tables[“Customers”].Columns.Add(“CompanyName”,
➥ System.Type.GetType(“System.String”));
11: myDataSet.Tables[“Customers”].Columns.Add(“ContactName”,
➥ System.Type.GetType(“System.String”));
12: myDataSet.Tables[“Customers”].Columns.Add(“Region”,
➥ System.Type.GetType(“System.String”));
13:
14: myDataAdapter = new SqlDataAdapter(“GetCustomersByCountry”,
➥ “server=localhost; database=Northwind; uid=sa; pwd=;”);
15: myDataAdapter.SelectCommand.CommandType = CommandType.StoredProcedure;
16: myDataAdapter.SelectCommand.Parameters.Add(new
➥ SqlParameter(“@country”, SqlDbType.VarChar, 50));
17: myDataAdapter.SelectCommand.Parameters[“@country”].Value = “Canada”;
18: myDataAdapter.Fill(myDataSet, “Customers”);
19:
20: myDataAdapter.SelectCommand.Parameters[“@country”].Value = “Spain”;
21: myDataAdapter.Fill(myDataSet, “Customers”);
22:
23: myDataGrid.DataSource = myDataSet.Tables[“Customers”];
24: myDataGrid.DataBind();
25: }
26: </script>

[VB & C#]

27: <html>
28: <body>
29: <form runat=”server” method=”post”>
30: <asp:DataGrid runat=”server” id=”myDataGrid” />
31: </form>
32: </body>
33: </html>

In Listing 3.11 you use the DataAdapter to select a small set of records from the database
(line 14) with the stored procedure from Listing 3.6. On line 15 you specify that the
SelectCommand property of the DataAdapter is a stored procedure. On line 16 you add a
parameter for the expected “@country” parameter in the stored procedure. On line 17 you set
the value of the parameter to “Canada.” Using the Fill() method you add those records to the
Customers DataTable on line 18. On line 20 you change the parameter’s value to “Spain.”
Since you are using the same DataAdapter to execute the second Fill() method, you do not
need to set the ConnectionString property, or recreate the parameter you are using. Using the
Fill() method, on line 18, you add the new result set to the existing records in the Customers
table. Figure 3.6 shows the result of executing the code in Listing 3.11.

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

75

06 1068 ch03 8/24/01 12:18 PM Page 75

FIGURE 3.6
The DataAdapter.Fill() method can be used to add records to a DataTable, or update existing records.

LISTING 3.12 Adding a Second DataTable to a DataSet

[VB]

01: <%@ Page Language=”VB” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: Sub Page_Load(Sender As Object, E As EventArgs)
06: Dim myDataAdapter As SqlDataAdapter
07: Dim myDataSet As New DataSet
08:
09: myDataAdapter = new SqlDataAdapter(“GetCustomersByCountry”,
➥ “server=localhost; database=Northwind; uid=sa; pwd=;”)

As you’ve learned, the DataAdapter works on a disconnected message-based model. You can
reuse the DataAdapter to fill additional DataTables in the same DataSet, or in other DataSets,
because there’s no physical link between the DataAdapter and the DataSet or DataTable. You
only need to change the SelectCommand property of the DataSet (if you want to use a new
SQL statement), or change a parameter value (if you want to use the same SQL statement), and
call the Fill() method, passing it the new DataSet and DataTable name (see Listing 3.12).

Reading and Displaying Data

PART II
76

06 1068 ch03 8/24/01 12:19 PM Page 76

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

77

LISTING 3.12 Continued

10: myDataAdapter.SelectCommand.CommandType = CommandType.StoredProcedure
11: myDataAdapter.SelectCommand.Parameters.Add(new
➥ SqlParameter(“@country”, SqlDbType.VarChar, 50))
12: myDataAdapter.SelectCommand.Parameters(“@country”).Value = “Canada”
13: myDataAdapter.Fill(myDataSet, “Canada_Customers”)
14:
15: myDataAdapter.SelectCommand.Parameters(“@country”).Value = “Spain”
16: myDataAdapter.Fill(myDataSet, “Spain_Customers”)
17:
18: myDataGrid.DataSource = myDataSet.Tables(“Canada_Customers”)
19: myDataGrid.DataBind()
20:
21: myOtherDataGrid.DataSource = myDataSet.Tables(“Spain_Customers”)
22: myOtherDataGrid.DataBind()
23: End Sub
24: </script>

[C#]

01: <%@ Page Language=”C#” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: void Page_Load(Object sender, EventArgs e){
06: SqlDataAdapter myDataAdapter;
07: DataSet myDataSet = new DataSet();
08:
09: myDataAdapter = new SqlDataAdapter(“GetCustomersByCountry”,
➥ “server=localhost; database=Northwind; uid=sa; pwd=;”);
10: myDataAdapter.SelectCommand.CommandType = CommandType.StoredProcedure;
11: myDataAdapter.SelectCommand.Parameters.Add(new
➥ SqlParameter(“@country”, SqlDbType.VarChar, 50));
12: myDataAdapter.SelectCommand.Parameters[“@country”].Value = “Canada”;
13: myDataAdapter.Fill(myDataSet, “Canada_Customers”);
14:
15: myDataAdapter.SelectCommand.Parameters[“@country”].Value = “Spain”;
16: myDataAdapter.Fill(myDataSet, “Spain_Customers”);
17:
18: myDataGrid.DataSource = myDataSet.Tables[“Canada_Customers”];
19: myDataGrid.DataBind();
20:
21: myOtherDataGrid.DataSource = myDataSet.Tables[“Spain_Customers”];
22: myOtherDataGrid.DataBind();
23: }
24: </script>

06 1068 ch03 8/24/01 12:19 PM Page 77

LISTING 3.12 Continued

[VB & C#]

25: <html>
26: <form runat=”server” method=”post”>
27: <body>
28: <asp:DataGrid runat=”server” id=”myDataGrid” />
29: <asp:DataGrid runat=”server” id=”myOtherDataGrid” />
30: </form>
31: </body>
32: </html>

In Listing 3.12 you use the same data access code from Listing 3.11. You use the Fill()
method to create a new DataTable named Canada_Customers. Then, by resetting the parameter
value you retrieve another set of data from the database. Using the Fill() method you create a
second DataTable named Spain_Customers. Finally you bind each of these DataTables to a
separate DataGrid. The resulting page is shown in Figure 3.7.

Reading and Displaying Data

PART II
78

FIGURE 3.7
The DataAdapter can be used to create multiple DataTables in one or more DataSets. This is allowed because the
DataAdapter is not explicitly tied to a single DataSet or DataTable.

06 1068 ch03 8/24/01 12:19 PM Page 78

Table and Column Mappings
Table and column mappings enable you to alter the schema of the DataTable that’s dynami-
cally created in the DataSet. In the previous listings you filled the DataSet, taking in the
schema provided to you by the data store. There are certainly instances when you’ll want to
change this. Often, database column names can be a bit cryptic, and changing them can make
writing your code easier. Table and column mappings allow you to create a master mapping
between the data returned from the data store and the DataTable in the DataSet. The DataSet
maintains the table and column mappings and can translate them back to their original names
when reconciling the data with the data store.

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

79

In the previous listings, you’ve been filling a DataSet with the Customers table from
the Northwind database. In the following listings, you’ll create a new TableMapping
for the Authors table in the Pubs database. Pubs is a sample database installed with
Microsoft SQL Server. I chose to switch to it because of its notoriously cryptic naming
conventions.

NOTE

In the following example, you’ll create table and column mappings for the Authors table in the
Pubs database. When you add a new TableMapping, you must pass in the TableMapping source
name and the DataTable name. If you specify “Table” (the default) as the source name, when
you fill the DataSet you do not need to pass in the DataTable name. The data retrieved will
use the TableMappings for “Table” by default, and a DataTable with the name you specified
when you created the TableMappings will be created. This is demonstrated in Listing 3.13.

LISTING 3.13 Creating Table and Column Mappings for the Default Table

[VB]

01: <%@ Page Language=”VB” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: Sub Page_Load(Sender As Object, E As EventArgs)
06: Dim myDataAdapter As SqlDataAdapter
07: Dim myDataSet As New DataSet
08:
09: myDataAdapter = new SqlDataAdapter(“SELECT * FROM Authors”,
➥ “server=localhost; database=Pubs; uid=sa; pwd=;”)
10:

06 1068 ch03 8/24/01 12:19 PM Page 79

LISTING 3.13 Continued

11: myDataAdapter.TableMappings.Add(“Table”, “Authors”)
12: With myDataAdapter.TableMappings(“Table”).ColumnMappings
13: .Add(“au_id”, “ID”)
14: .Add(“au_lname”, “Last Name”)
15: .Add(“au_fname”, “First Name”)
16: .Add(“phone”, “Phone”)
17: .Add(“address”, “Address”)
18: .Add(“city”, “City”)
19: .Add(“state”, “State”)
20: .Add(“zip”, “Zipcode”)
21: .Add(“contract”, “Contract”)
22: End With
23:
24: myDataAdapter.Fill(myDataSet)
25:
26: myDataGrid.DataSource = myDataSet.Tables(“Authors”)
27: myDataGrid.DataBind()
28: End Sub
29: </script>

[C#]

01: <%@ Page Language=”C#” %>
02: <%@ Import Namespace=”System.Data” %>
03: <%@ Import Namespace=”System.Data.SqlClient” %>
04: <script runat=”server”>
05: void Page_Load(Object sender, EventArgs e){
06: SqlDataAdapter myDataAdapter;
07: DataSet myDataSet = new DataSet();
08:
09: myDataAdapter = new SqlDataAdapter(“SELECT * FROM Authors”,
➥ “server=localhost; database=Pubs; uid=sa; pwd=;”);
10:
11: myDataAdapter.TableMappings.Add(“Table”, “Authors”);
12:
13: myDataAdapter.TableMappings[“Table”].
➥ ColumnMappings.Add(“au_id”, “ID”);
14: myDataAdapter.TableMappings[“Table”].
➥ ColumnMappings.Add(“au_lname”, “Last Name”);
15: myDataAdapter.TableMappings[“Table”].
➥ ColumnMappings.Add(“au_fname”, “First Name”);
16: myDataAdapter.TableMappings[“Table”].
➥ ColumnMappings.Add(“phone”, “Phone”);
17: myDataAdapter.TableMappings[“Table”].
➥ ColumnMappings.Add(“address”, “Address”);
18: myDataAdapter.TableMappings[“Table”].
➥ ColumnMappings.Add(“city”, “City”);

Reading and Displaying Data

PART II
80

06 1068 ch03 8/24/01 12:19 PM Page 80

ADO.NET Managed Providers

CHAPTER 3

3

A
D

O
.N

ET
M

A
N

A
G

ED
P

R
O

V
ID

ER
S

81

LISTING 3.13 Continued

19: myDataAdapter.TableMappings[“Table”].
➥ ColumnMappings.Add(“state”, “State”);
20: myDataAdapter.TableMappings[“Table”].
➥ ColumnMappings.Add(“zip”, “Zipcode”);
21: myDataAdapter.TableMappings[“Table”].
➥ ColumnMappings.Add(“contract”, “Contract”);
22:
23:
24: myDataAdapter.Fill(myDataSet);
25:
26: myDataGrid.DataSource = myDataSet.Tables[“Authors”];
27: myDataGrid.DataBind();
28: }
29: </script>

[VB & C#]

30: <html>
31: <body>
32: <form runat=”server” method=”post”>
33: <asp:DataGrid runat=”server” id=”myDataGrid” />
34: <asp:DataGrid runat=”server” id=”myOtherDataGrid” />
35: </form>
36: </body>
37: </html>

On line 9, you create a new SqlDataAdapter, selecting all of the fields in the Authors table of
the Pubs database. On line 11, you add a new default table mapping by passing in the name
“Table” as the first parameter. Any table created in the DataSet that doesn’t have a name speci-
fied in the Fill() method will use this table mapping and will be given the name “Authors”, as
indicated on line 11. On lines 13–21 you create the column mappings for all of the fields
in the Authors table. The first parameter passed into the ColumnMappings collection’s Add()
method is the name of the field in the database. The second parameter is the name you’re
giving the field in the DataTable.

In case you’d rather not alter the DataSet’s default table and column mappings, the DataAdapter
allows you to add named table and column mappings. Rather than specifying “Table” as the
source name, you can provide a new source name. When you call the Fill() method, you pass
in the new source name as the table parameter. The DataSet checks for a table mapping for the
source name passed in. If no table mapping exists, the schema is built on the fly based on the
data store’s schema, the same as in earlier examples. If there’s a table mapping for the name
passed in, it’s used.

11: myDataAdapter.TableMappings.Add(“BookAuthors”, “BookAuthors”);

24: myDataAdapter.Fill(myDataSet, “BookAuthors”);

06 1068 ch03 8/24/01 12:19 PM Page 81

Line 11 shows a table mapping named “BookAuthors”, specifying the name “BookAuthors” to
be used when the DataTable is created. (Lines 12–23 did not change from Listing 3.13.) On
line 24, you call the Fill() method, passing in the name of your table mapping (“BookAuthors”).
The DataSet finds this table mapping and creates a DataTable named “BookAuthors”, using
the schema you created.

Summary
Chapter 1 looked at what ASP.NET is, and Chapter 2 looked at what ADO.NET is. This chap-
ter pulled the two pieces together.

In this chapter you learned that the ADO.NET Managed Providers are the bridge from a data
store to your data-driven application. The Managed Providers come in two stock flavors: the
SQL Managed Provider and the OleDb Managed Provider. The SQL Managed Provider is used
to connect directly to a Microsoft SQL Server database (version 7.0 or higher), and bypasses
OLEDB to provider better performance. The OleDb Managed Provider is used to connect to
non-Microsoft SQL Server databases, such as Access, Oracle, and a host of others.

In this chapter you created connections to a database, built command objects to execute SQL
statements on the database, and used the DataReader to iterate through data before binding it
to a server control. You also learned about the DataAdapter class; a specific class for bridging
between the Web application and the database to return the result set as a DataTable in a
DataSet.

Throughout this chapter you built sample Web forms that connected to the database and
returned records as either a data stream (DataReader), or a DataTable (DataAdapter).

By now you should be comfortable with the two Managed Providers and should be ready to
start building data-driven Web applications. For the rest of this book you’ll be working with
both the Managed Providers. You’ll be pulling data into an application with the Managed
Command or the DataAdapter, and you’ll use the DataSet to persist the data, or the
DataReader to iterate through the data.

If it felt as though you covered a lot in this chapter, you did. You’ll be using it repetitively
throughout this book, so don’t worry. . . you’ll get lots of practice.

Reading and Displaying Data

PART II
82

06 1068 ch03 8/24/01 12:19 PM Page 82

