
Data encryption standard (DES) 

Data encryption standard (DES) has been found vulnerable against very powerful attacks and 

therefore, the popularity of DES has been found slightly on decline. 

DES is a block cipher, and encrypts data in blocks of size of 64 bit each, means 64 bits of plain 

text goes as the input to DES, which produces 64 bits of cipher text. The same algorithm and key 

are used for encryption and decryption, with minor differences. The key length is 56 bits. The 

basic idea is show in figure. 

 

We have mention that DES uses a 56 bit key. Actually, the initial key consists of 64 bits. 

However, before the DES process even starts, every 8th bit of the key is discarded to produce a 

56 bit key. That is bit position 8, 16, 24, 32, 40, 48, 56 and 64 are discarded.  

 

Thus, the discarding of every 8th bit of the key produces a 56-bit key from the original 64-bit 

key. 

DES is based on the two fundamental attributes of cryptography: substitution (also called as 

confusion) and transposition (also called as diffusion). DES consists of 16 steps, each of which is 

called as a round. Each round performs the steps of substitution and transposition. Let us now 

discuss the broad-level steps in DES.  



 

 

1. In the first step, the 64 bit plain text block is handed over to an initial Permutation (IP) 

function. 

2. The initial permutation performed on plain text. 

3. Next the initial permutation (IP) produces two halves of the permuted block; says Left 

Plain Text (LPT) and Right Plain Text (RPT). 

4. Now each LPT and RPT to go through 16 rounds of encryption process. 

5. In the end, LPT and RPT are rejoined and a Final Permutation (FP) is performed on the 

combined block 

6. The result of this process produces 64 bit cipher text. 

 



Initial Permutation (IP) – 
As we have noted, the Initial permutation (IP) happens only once and it happens before the first 

round. It suggests how the transposition in IP should proceed, as show in figure.  

For example, it says that the IP replaces the first bit of the original plain text block with the 58th 

bit of the original plain text, the second bit with the 50th bit of the original plain text block and 

so on. 

This is nothing but jugglery of bit positions of the original plain text block. The same rule applies 

for all the other bit positions which shows in the figure. 

 

As we have noted after IP done, the resulting 64-bit permuted text block is divided into two half 

blocks. Each half block consists of 32 bits, and each of the 16 rounds, in turn, consists of the 

broad level steps outlined in figure. 

 



Step-1: Key transformation – 
We have noted initial 64-bit key is transformed into a 56-bit key by discarding every 8th bit of 

the initial key. Thus, for each a 56-bit key is available. From this 56-bit key, a different 48-bit 

Sub Key is generated during each round using a process called as key transformation. For this 

the 56 bit key is divided into two halves, each of 28 bits. These halves are circularly shifted left 

by one or two positions, depending on the round. 

For example, if the round number 1, 2, 9 or 16 the shift is done by only position for other rounds, 

the circular shift is done by two positions. The number of key bits shifted per round is show in 

figure. 

 

After an appropriate shift, 48 of the 56 bit are selected. for selecting 48 of the 56 bits the table 

show in figure given below. For instance, after the shift, bit number 14 moves on the first 

position, bit number 17 moves on the second position and so on. If we observe the table 

carefully, we will realize that it contains only 48 bit positions. Bit number 18 is discarded (we 

will not find it in the table), like 7 others, to reduce a 56-bit key to a 48-bit key. Since the key 

transformation process involves permutation as well as selection of a 48-bit sub set of the 

original 56-bit key it is called Compression Permutation. 

 

Because of this compression permutation technique, a different subset of key bits is used in each 

round. That’s make DES not easy to crack. 

Step-2: Expansion Permutation – 
Recall that after initial permutation, we had two 32-bit plain text areas called as Left Plain 

Text(LPT) and Right Plain Text(RPT). During the expansion permutation, the RPT is expanded 

from 32 bits to 48 bits. Bits are permuted as well hence called as expansion permutation. This 

happens as the 32 bit RPT is divided into 8 blocks, with each block consisting of 4 bits. Then, 

each 4 bit block of the previous step is then expanded to a corresponding 6 bit block, i.e., per 4 

bit block, 2 more bits are added. 



 

This process results into expansion as well as permutation of the input bit while creating output. 

Key transformation process compresses the 56-bit key to 48 bits. Then the expansion 

permutation process expands the 32-bit RPT to 48-bits. Now the 48-bit key is XOR with 48-bit 

RPT and resulting output is given to the next step, which is the S-Box substitution. 

 

Iterated DES:  

A block cipher that "iterates a fixed number of times of another block cipher, called round 

function, with a different key, called round key, for each iteration". 

Most block ciphers are constructed by repeatedly applying a simpler function. This approach is 

known as iterated block cipher. Each iteration is termed a round, and the repeated function is 

termed the round function; anywhere between to 32 rounds are typical.  

 

DES-X:  

In cryptography, DES-X (or DESX) is a variant on the DES (Data Encryption Standard) block 

cipher intended to increase the complexity of a brute force attack using a technique called key 

whitening. 

The algorithm was included in RSA Security's BSAFE cryptographic library since the late 

1980s.DES-X augments DES by XORing an extra 64 bits of key (K1) to the plaintext before 

applying DES, and then XORing another 64 bits of key (K2) after the encryption: 

The key size is thereby increased to 56 + 2 × 64 = 184 bits. 



However, the effective key size (security) is only increased to 56+64-1- lg(M) =119 - lg(M) = 

~119 bits, where M is the number of known plaintext/ciphertext pairs the adversary can 

obtain,and lg() denotes the binary logarithm. (Because of this, some implementations actually 

make K2 a strong one way function of K1 and K.) 

DES-X also increases the strength of DES against differential cryptanalysis and linear 

cryptanalysis, although the improvement is much smaller than in the case of brute force attacks. 

It is estimated that differential cryptanalysis would require 261 chosen plaintexts (vs. 247 for 

DES), while linear cryptanalysis would require 260 known plaintexts (vs. 243 for DES.) Note 

that with 264 plaintexts (known or chosen being the same in this case), DES (or indeed any other 

block cipher with a 64 bit block size) is totally broken via the elementary codebook attack. 

 

 

Advanced Encryption Standard (AES): 

In cryptography, the Advanced Encryption Standard (AES), also known as Rijndael, is a block 

cipher adopted as an encryption standard by the U.S. government. It has been analyzed 

extensively and is now used worldwide, as was the case with its predecessor, the Data 

Encryption Standard (DES). 

AES is one of the most popular algorithms used in symmetric key cryptography. It is available 

by choice in many different encryption packages. This marks the first time that the public has 

had access to a cipher approved by NSA for top secret information. 

AES is fast in both software and hardware, is relatively easy to implement, and requires litt le 

memory. As a new encryption standard, it is currently being deployed on a large scale. 

Operation of AES 

Unlike DES, the number of rounds in AES is variable and depends on the length of the key. AES 

uses 10 rounds for 128-bit keys, 12 rounds for 192-bit keys and 14 rounds for 256-bit keys. Each 

of these rounds uses a different 128-bit round key, which is calculated from the original AES 

key. 



The schematic of AES structure is given in the following illustration − 

 

Encryption Process 

Here, we restrict to description of a typical round of AES encryption. Each round comprise of 

four sub-processes. The first round process is depicted below − 

 

 

Byte Substitution (SubBytes) 

The 16 input bytes are substituted by looking up a fixed table (S-box) given in design. The result 

is in a matrix of four rows and four columns. 



Shiftrows 

Each of the four rows of the matrix is shifted to the left. Any entries that ‘fall off’ are re-inserted 

on the right side of row. Shift is carried out as follows − 

 First row is not shifted. 

 Second row is shifted one (byte) position to the left. 

 Third row is shifted two positions to the left. 

 Fourth row is shifted three positions to the left. 

 The result is a new matrix consisting of the same 16 bytes but shifted with respect to each 

other. 

MixColumns 

Each column of four bytes is now transformed using a special mathematical function. This 

function takes as input the four bytes of one column and outputs four completely new bytes, 

which replace the original column. The result is another new matrix consisting of 16 new bytes. 

It should be noted that this step is not performed in the last round. 

Addroundkey 

The 16 bytes of the matrix are now considered as 128 bits and are XORed to the 128 bits of the 

round key. If this is the last round then the output is the ciphertext. Otherwise, the resulting 128 

bits are interpreted as 16 bytes and we begin another similar round. 

Decryption Process 

The process of decryption of an AES ciphertext is similar to the encryption process in the reverse 

order. Each round consists of the four processes conducted in the reverse order − 

 Add round key 

 Mix columns 

 Shift rows 

 Byte substitution 

Since sub-processes in each round are in reverse manner, unlike for a Feistel Cipher, the 

encryption and decryption algorithms needs to be separately implemented, although they are 

very closely related. 

 

 

 

 

 



Pseudorandom Function 

In cryptography, a pseudorandom function family, abbreviated PRF, is a collection of efficiently-

computable functions which emulate a random oracle in the following way: No efficient 

algorithm can distinguish (with significant advantage) between a function chosen randomly from 

the PRF family and a random oracle (a function whose outputs are fixed completely at random). 

Pseudorandom functions are vital tools in the construction of cryptographic primitives, especially 

secure encryption schemes. 

Pseudorandom functions are efficient and deterministic functions which return pseudorandom 

output indistinguishable from random sequences. They are made based on pseudorandom 

generators but contrary to them, in addition to the internal state, they can accept any input data. 

The input may be arbitrary but the output must always look completely random. 

A pseudorandom function, which output is indistinguishable from random sequences, is called 

a secure one. 

Definition: The pseudorandom function (PRF) defined over (K, X, Y) is an efficient 

and deterministic function which returns a pseudorandom output sequence: 

      F: K x X -> Y  

A pseudorandom function family can be constructed from any pseudorandom generator, using, 

for example, the construction given by Goldreich, Goldwasser, and Micali. 

 

Psedorandom Permutations 

In cryptography, a pseudorandom permutation, abbreviated PRP, is an idealized block cipher. It means 

the cipher that cannot be distinguished from a random permutation (that is, a permutation selected at 

random with uniform probability, from the family of all permutations on blocks of that size) with less 

computational effort than specified by the cipher's security parameters (this usually means the effort 

required should be about the same as a brute force search through the cipher's key space). If a 

distinguishing algorithm exists that achieves significant advantage with less effort than the security 

parameter specifies, the cipher is considered broken at least in a certificational sense, even if such a break 

doesn't immediately lead to a practical security failure. 

Pseudorandom permutations can be defined in a similar way. They create output data 

indistinguishable from random sequences. 

Definition: The pseudorandom permutation (PRP) defined over (K, X) is an efficient 

and deterministic function which returns a pseudorandom output sequence: 

      E: K x X -> X  

 the function E (k, .) in one-to-one 

 there exists an efficient inversion algorithm D (k, x) 

http://www.crypto-it.net/eng/theory/pseudorandom-generator.html
http://www.crypto-it.net/eng/theory/pseudorandom-generator.html


Pseudorandom permutations which produce output sequences that are indistinguishable from 

random sequences, are called secure PRPs. It can be proved that secure PRP defined over large 

enough X is also a secure PRF (according to the PRF Switching Lemma). 

 

Birthday attack 

A birthday attack is a type of cryptographic attack that exploits the mathematics behind the 

birthday problem in probability theory. This attack can be used to abuse communication between 

two or more parties. The attack depends on the higher likelihood of collisions found between 

random attack attempts and a fixed degree of permutations (pigeonholes), as described in the 

birthday problem/paradox. 

Mathematics 

Given a function f, the goal of the attack is to find two inputs x1, x2 such that f(x1) = f(x2). Such a pair 

x1, x2 is called a collision. The method used to find a collision is to simply evaluate the function f for 

different input values that may be chosen randomly or pseudorandomly until the same result is found 

more than once. Because of the birthday paradox this method can be rather efficient. Specifically, if a 

function f(x) yields any of H different outputs with equal probability and H is sufficiently large, then we 

expect to obtain a pair of different arguments x1 and x2 with f(x1) = f(x2) after evaluating the function 

for about different arguments on average. 

Understanding the problem 
As an example, consider the scenario in which a teacher with a class of 30 students (n = 30) asks 

for everybody's birthday (for simplicity, ignore leap years) to determine whether any two 

students have the same birthday (corresponding to a hash collision as described further). 

Intuitively, this chance may seem small. If the teacher picked a specific day (say, 16 September), 

then the chance that at least one student was born on that specific day is 1-(364/365)30, about 

7.9%. However, counter-intuitively, the probability that at least one student has the same 

birthday as any other student on any day is around 70% (for n = 30), from the formula  

1-365!/((365-n)!.365n). 

 

Number-Theoretic Primitives 

Number theory is a source of several computational problems that serve as primitives in the 

design of cryptographic schemes. Asymmetric cryptography in particular relies on these 

primitives. As with other beasts that we have been calling “primitives,” these computational 

problems exhibit some intractability features, but by themselves do not solve any cryptographic 

problem directly relevant to a user security goal. But appropriately applied, they become useful 

to this end. In order to later effectively exploit them it is useful to first spend some time 

understanding them.  

https://en.wikipedia.org/wiki/Leap_year
https://en.wikipedia.org/wiki/Collision_(computer_science)


This understanding has two parts. The first is to provide precise definitions of the various 

problems and their measures of intractability. The second is to look at what is known or 

conjectured about the computational complexity of these problems.  

There are two main classes of primitives. The first class relates to the discrete logarithm problem 

over appropriate groups, and the second to the factoring of composite integers. 

 

 

 

 



 

 



 

 



 

 

Fermat's Little Theorem 

Fermat's little theorem is a fundamental theorem in elementary number theory, which helps 

compute powers of integers modulo prime numbers. It is a special case of Euler's theorem, and is 

important in applications of elementary number theory, including primality testing and public-

key cryptography. 

The result is called Fermat's "little theorem" in order to distinguish it from Fermat's last theorem. 

Fermat’s little theorem 

Fermat’s little theorem states that if p is a prime number, then for any integer a, the number  

a p –a is an integer multiple of p.  

Here p is a prime number 

ap ≡ a (mod p). 

 

https://en.wikipedia.org/wiki/Fermat%27s_little_theorem


Special Case: If a is not divisible by p, Fermat’s little theorem is equivalent to the statement that 

a p-1-1 is an integer multiple of p. 

ap-1 ≡ 1 (mod p) 

OR 

ap-1 % p = 1 

Here a is not divisible by p.  

 

Take an Example How Fermat’s little theorem works 

Examples: 

 P = an integer Prime number    

 a = an integer which is not multiple of P   

 Let a = 2 and P = 17  

  

 According to Fermat's little theorem  

  2 17 - 1     ≡ 1 mod(17) 

 we got  65536 % 17 ≡ 1    

 that mean (65536-1) is an multiple of 17  

Use of Fermat’s little theorem 

If we know m is prime, then we can also use Fermats’s little theorem to find the inverse. 

am-1 ≡ 1 (mod m) 

If we multiply both sides with a-1, we get 

a-1 ≡ a m-2 (mod m) 

 

Euler's Theorem 

The generalization of Fermat’s theorem is known as Euler’s theorem. In general, Euler’s theorem states 

that, “if p and q are relatively prime, then  ”, where φ is Euler’s totient function for 

integers. That is, is the number of non-negative numbers that are less than q and relatively prime to 

q. 

 
Proof of Euler’s theorem: 

Consider the set of non-negative numbers, 

 
These elements are relatively (co-prime) to q. 

 

 



Consider another set of non-negative numbers, 

 

 
 

Since the sets are congruent to each other, 

 

Since the set of numbers are relatively prime to q, dividing by the term is permissible. 

 
 

Hence proved. 

 

RSA Algorithm (Rivest-Shamir-Adleman) 

The RSA algorithm is named after Ron Rivest, Adi Shamir and Len Adleman, who invented it in 

1977 [RIVE78].  

The RSA cryptosystem is the most widely-used public key cryptography algorithm in the world. 

It can be used to encrypt a message without the need to exchange a secret key separately.  

The RSA algorithm can be used for both public key encryption and digital signatures. Its security 

is based on the difficulty of factoring large integers.  

RSA algorithm is asymmetric cryptography algorithm. Asymmetric actually means that it works 

on two different keys i.e. Public Key and Private Key. As the name describes that the Public 

Key is given to everyone and Private key is kept private. 

An example of asymmetric cryptography :  

1. A client (for example browser) sends its public key to the server and requests for some 

data. 

2. The server encrypts the data using client’s public key and sends the encrypted data.  

3. Client receives this data and decrypts it.  

https://www.di-mgt.com.au/rsa_alg.html#RIVE78


Since this is asymmetric, nobody else except browser can decrypt the data even if a third party 

has public key of browser. 

The idea! The idea of RSA is based on the fact that it is difficult to factorize a large integer. The 

public key consists of two numbers where one number is multiplication of two large prime 

numbers. And private key is also derived from the same two prime numbers. So if somebody can 

factorize the large number, the private key is compromised. Therefore encryption strength totally 

lies on the key size and if we double or triple the key size, the strength of encryption increases 

exponentially. RSA keys can be typically 1024 or 2048 bits long, but experts believe that 1024 

bit keys could be broken in the near future. But till now it seems to be an infeasible task. 

Let us learn the mechanism behind RSA algorithm :  

>> Generating Public Key :  

 Select two prime no's. Suppose P = 53 and Q = 59. 

 Now First part of the Public key  : n = P*Q = 3127. 

  We also need a small exponent say e :  

 But e Must be  

o An integer. 

o Not be a factor of n.  

o 1 < e < Φ(n) [Φ(n) is discussed below],  

o Let us now consider it to be equal to 3. 

 Our Public Key is made of n and e 

>> Generating Private Key :  

 We need to calculate Φ(n) : 

 Such that Φ(n) = (P-1)(Q-1)      

       so,  Φ(n) = 3016 

 Now calculate Private Key, d :  

 d = (k*Φ(n) + 1) / e for some integer k 

 For k = 2, value of d is 2011. 

 Now we are ready with our – Public Key ( n = 3127 and e = 3) and Private Key(d = 

2011) 

 Now we will encrypt “HI” :  

 Convert letters to numbers : H  = 8 and I = 9 

 Thus Encrypted Data c = 89e mod n.  

 Thus our Encrypted Data comes out to be 1394 

 Now we will decrypt 1394 :  

 Decrypted Data = cd mod n.  

 Thus our Encrypted Data comes out to be 89 

 8 = H and I = 9 i.e. "HI". 

https://www.geeksforgeeks.org/eulers-totient-function/

