
Heuristic Search 

Heuristic search is an AI search technique that employs heuristic for its moves. Heuristic is a rule of 

thumb that probably leads to a solution. Heuristics play a major role in search strategies because of 

exponential nature of the most problems. Heuristics help to reduce the number of alternatives from an 

exponential number to a polynomial number. In Artificial Intelligence, heuristic search has a general 

meaning, and a more specialized technical meaning. In a general sense, the term heuristic is used for any 

advice that is often effective, but is not guaranteed to work in every case. Within the heuristic search 

architecture, however, the term heuristic usually refers to the special case of a heuristic evaluation 

function. 

 

Generate and Test search algorithm 

Generate-and-test search algorithm is a very simple 

algorithm that guarantees to find a solution if done 

systematically and there exists a solution. 

Algorithm: Generate-And-Test 

1. Generate a possible solution. 

2. Test to see if this is the expected solution. 

3. If the solution has been found quit else go to step 1. 

Potential solutions that need to be generated vary 

depending on the kinds of problems. For some 

problems the possible solutions may be particular 

points in the problem space and for some problems, 

paths from the start state. 

Generate-and-test, like depth-first search, requires that complete solutions be generated for testing. In its 

most systematic form, it is only an exhaustive search of the problem space. Solutions can also be 

generated randomly but solution is not guaranteed. This approach is what is known as British Museum 

algorithm: finding an object in the British Museum by wandering randomly. 

Hill Climbing 

Hill climbing search algorithm is simply a loop that continuously moves in the direction of increasing 

value. It stops when it reaches a “peak” where no neighbour has higher value. This algorithm is 

considered to be one of the simplest procedures for implementing heuristic search. The hill climbing 

comes from that idea if you are trying to find the top of the hill and you go up direction from where ever 

you are. This heuristic combines the advantages of both depth first and breadth first searches into a 

single method. 

 



The name hill climbing is derived from simulating the situation of a person climbing the hill. The person 

will try to move forward in the direction of at the top of the hill. His movement stops when it reaches at 

the peak of hill and no peak has higher value of heuristic function than this. Hill climbing uses 

knowledge about the local terrain, providing a very useful and effective heuristic for eliminating much 

of the unproductive search space. It is a branch by a local evaluation function. 

 The hill climbing is a variant of generate and test in which direction the search should proceed. At each 

point in the search path, a successor node that appears to reach for exploration. 

Algorithm: 

Step 1: Evaluate the starting state. If it is a goal state then stop and return success. 

Step 2: Else, continue with the starting state as considering it as a current state. 

Step 3: Continue step-4 until a solution is found i.e. until there are no new states left to be 

applied in the current state. 

Step 4: 

a. Select a state that has not been yet applied to the current state and apply it to produce a new state. 

b. Procedure to evaluate a new state. 

     i. If the current state is a goal state, then stop and return success. 

     ii. If it is better than the current state, then make it current state and proceed further. 

     iii. If it is not better than the current state, then continue in the loop until a solution is found. 

Step 5: Exit. 

Advantages: 

 Hill climbing technique is useful in job shop scheduling,   automatic 

programming, designing, and vehicle routing and portfolio management. 

 It is also helpful to solve pure optimization problems where the objective is to find 

the best according to the objective function. 

 It requires much less conditions than other search techniques. 

Disadvantages: 

The question that remains on hill climbing search is whether this hill is the highest hill 

possible. Unfortunately without further extensive exploration, this question cannot be 

answered. This technique works but as it uses local information that’s why it can be fooled. 

The algorithm doesn’t maintain a search tree, so the current node data structure need only 

record the state and its objective function value. It assumes that local improvement will lead 

to global improvement. 

 



Best First Search 

Best first search is an instance of graph search algorithm in which a node is selected for 

expansion based   o evaluation function f (n). Traditionally, the node which is the lowest 

evaluation is selected for the explanation because the evaluation measures distance to the 

goal. Best first search can be implemented within general search frame work via a priority 

queue, a data structure that will maintain the fringe in ascending order off values. This search 

algorithm serves as combination of depth first and breadth first search algorithm. Best first 

search algorithm is often referred greedy algorithm this is because they quickly attack the 

most desirable path as soon as its heuristic weight becomes the most desirable. 

Concept: 

 

Step 1: Traverse the root node 

Step 2: Traverse any neighbour of the root node, that is maintaining a least distance from 

the root node and insert them in ascending order into the queue. 

Step 3: Traverse any neighbour of neighbour of the root node, that is maintaining a least 

distance from the root node and insert them in ascending order into the queue 

Step 4: This process will continue until we are getting the goal node 

 

Algorithm: 

 

Step 1: Place the starting node or root node into the queue. 

 
Step 2: If the queue is empty, then stop and return failure. 

 
Step 3: If the first element of the queue is our goal node, then stop and return success. 

 
Step 4: Else, remove the first element from the queue. Expand it and compute the 

estimated goal distance for each child. Place the children in the queue in ascending order to 

the goal distance. 

Step 5: Go to step-3 

Step 6: Exit. 

 



Graph Searching and the Generic Search Algorithm 

Many AI problems can be cast as the problem of finding a path in a graph. A graph is made up of nodes 

and arcs. Arcs are ordered pairs of nodes that can have associated costs. 

Suppose we have a set of nodes that we call "start nodes" and a set of nodes that we call "goal nodes", a 

solution is a path from a start node to a goal node. 

Consider the following simple graph (this is a tree as there is at most one arc going into each node). The 

start nodes are colored grey, the goal nodes as are colored yellow, and the other nodes are not coloured. 

AIspace Applet failed to load. Is Java enabled in your browser? 

To find a solution, we need to search for a path. We use the generic searching algorithm. The frontier is 

a set of paths from a start node (we often identify the path with the node at the end of the path). The 

nodes at the end of the frontier are outlined in green or blue. Initially the frontier is the set of empty 

paths from start nodes. Intuitively the generic graph searching algorithm is: 

 Repeat 

o select a path on the frontier. Let's call the path selected P. 

o if P is a path to a goal node, stop and return P, 

o remove P from the frontier 

o for each neighbor of the node at the end of P, extend P to that neighbour and add the extended 

path to the frontier  

 Until the frontier is empty. When it is empty there are no more solutions.  

To see how this works you can carry out the generic search algorithm selecting the nodes manually. The 

frontier is initially all coloured in green. You can click on a node on the frontier to select it. The node 

and the path to it turn red, and its neighbors (given in blue) are added to the frontier. The new frontier is 

then the nodes outlined in blue and green; the blue outlined nodes are the newly added nodes, and the 

green outlined nodes are the other node on the frontier. You can keep clicking on nodes till you find a 

solution. Then you can reset the search to try a different node ordering. 

There are a number of features that should be noticed about this: 

 For a finite graph without cycles, it will eventually find a solution no matter which order you select 

paths on the frontier. 

 Some strategies for selecting paths from the frontier expand fewer nodes that other strategies. 

 As part of the definition of the algorithm a solution is only found when a goal node is selected from 

the frontier, not when it is added. 

 

 



Backtracking 

The order in which variables are instantiated can have a large effect on the size of the search tree. The 

idea of variable ordering is to order the variables form most constrained to least constrained. For 

example, if a variable has only a single value remaining that is consistent with the previously 

instantiated variable, it should be assigned that value immediately. In general, the variables should be 

instantiated in increasing order of the size of their remaining domains. This can either be done statically 

at the beginning of the search or dynamically, reordering the remaining variables each time a variable is 

assigned a new value. 

 

LISP (list processing) 

LISP, an acronym for list processing, is a programming language that was designed for easy 

manipulation of data strings. Developed in 1959 by John McCarthy, it is a commonly used language for 

artificial intelligence (AI) programming. It is one of the oldest programming languages still in relatively 

wide use. 

In LISP, all computation is expressed as a function of at least one object. Objects can be other functions, 

data items (such as constants or variables), or data structures. LISP's ability to compute with symbolic 

expressions rather than numbers makes it convenient for AI applications. 

Natural Language Processing 

NLP is a way for computers to analyze, understand, and derive meaning from human language in a 

smart and useful way. By utilizing NLP, developers can organize and structure knowledge to perform 

tasks such as automatic summarization, translation, named entity recognition, relationship extraction, 

sentiment analysis, speech recognition, and topic segmentation. 

 

Knowledge Representation 

Knowledge representation is probably, the most important ingredient for developing an AI. A 

representation is a layer between information accessible from outside world and high level thinking 

processes. Without knowledge representation it is impossible to identify what thinking processes are, 

mainly because representation itself is a substratum for a thought. 

The subject of knowledge representation has been messaged for a couple of decades already. For many 

applications, specific domain knowledge is required. Instead of coding such knowledge into a system in 

a way that it can never be changed (hidden in the overall implementation), more flexible ways of  

representing knowledge and reasoning about it have been developed in the last 10 years. 

The need of knowledge representation was felt as early as the idea to develop intelligent systems.  With 

the hope that readers are well conversant with the fact by now, that intelligent requires possession of 

knowledge and that knowledge is acquired by us by various means and stored in the memory using some 

representation techniques. Putting in another way, knowledge representation is one of the many critical 



aspects, which are required for making a computer behave intelligently. Knowledge representation refers   

to the data structures techniques and organizing notations that are used in AI. These include semantic 

networks, frames, logic, production rules and conceptual graphs. 

 

Properties for knowledge Representation 

The following properties should be possessed by a knowledge representation system. 

a. Representational Adequacy: It is the ability to represent the required knowledge. 

b. Inferential Adequacy: It is the ability to manipulate the knowledge represented to produce new 

knowledge corresponding to that inferred from the original. 

c. Inferential Efficiency: The ability to direct the inferential mechanisms into the most productive 

directions by storing appropriate guides. 

d. Acquisitional Efficiency: The ability to acquire new knowledge using  automatic  methods wherever 

possible rather than reliance on human intervention. 

Syntax and semantics for Knowledge Representation 

Knowledge representation languages should have precise syntax and semantics. You must know exactly 

what an expression means in terms of objects in the real world. Suppose we have decided that “red 1” 

refers to a dark red colour, “car1” is my car, car2 is another. Syntax of language will tell you which of 

the following is legal: red1 (car1), red1 car1, car1 (red1), red1 (car1 & car2)? 

Semantics of language tell you exactly what an expression means: for example, Pred (Arg) means that 

the property referred to by Pred applies to the object referred to by Arg. E.g., properly “dark red” applies 

to my car. 



 

 

Types of Knowledge Representation 

Knowledge can be represented in different ways. The structuring of knowledge and how 

designers might view it, as well as the type of structures used internally are considered.  

Different knowledge representation techniques are 

a. Logic 

b. Semantic Network 

c. Frame 

d. Conceptual Graphs 

e. Conceptual Dependency 

f. Script 

 

Logic 

A logic is a formal language, with precisely defined syntax and semantics, which supports sound 

inference. Different logics exist, which allow you to represent different kinds of things, and which allow 

more or less efficient inference. The logic may be different types like propositional logic, predicate 

logic, temporal logic, description logic etc. But representing something in logic may not be very natural 

and inferences may not be efficient. 

 

 



Prepositional Logics 

In propositional logic a complete sentence can be presented s an atomic proposition. and complex 

sentences can be created using AND, OR, and other operators.....these propositions has only true of false 

values and we can use truth tables to define them... like book  is  on  the  table....this  is  a  single  

proposition... In predicate logic there are objects, properties, functions (relations) are involved. 

In propositional logic, we use letters to symbolize entire propositions. Propositions are statements of the 

form "x is y" where x is a subject and y is a predicate. For example, "Socrates is a Man" is a proposition 

and might be represented in propositional logic as "S". 

 

Predicate Logics 

In predicate logic, we symbolize subject and predicate separately. Logicians often use lowercase letters 

to symbolize subjects (or objects) and uppercase letter to symbolize predicates. For example, Socrates is 

a subject and might be represented in predicate logic as "s" while "man" is a predicate and might be 

represented as "M". If so, "Socrates is a man" would be represented "Ms". 

The important difference is that you can use predicate logic to say something about a set of objects. By 

introducing the universal quantifier ("∀"), the existential quantifier ("∃") and variables ("x", "y" or "z"), 

we can use predicate logic to represent thing like "Everything is green" as "∀Gx" or "Something is blue" 

as "∃Bx. 

 

Resolution 

Robinson in 1965 introduced the resolution principle, which can be directly applied to any set of clauses.  

The principal is "Given any two clauses A and B, if there is a literal P1 in A which has a complementary 

literal P2 in B, delete P1 & P2 from A and B and construct a disjunction of the remaining clauses. The 

clause so constructed is called resolvent of A and B." 

For example, consider the following clauses A: P V Q V R 

B: `p V Q V R C: `Q V R 

Clause A has the literal P which is complementary to `P in B. Hence both of them deleted and a 

resolvent (disjunction of A and B after the complementary clauses are removed) is generated. That 

resolvent has again a literal Q whose negation is available in C. Hence resolving those two, one has the 

final resolvent. 

A: P V Q V R (given in the problem) B: `p V Q V (given in the problem) D: Q V R (resolvent of A and 

B) 

C: `Q V R (given in the problem) E: R (resolvent of C and D) 

 


